Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey I. Eldridge is active.

Publication


Featured researches published by Jeffrey I. Eldridge.


Journal of Thermal Spray Technology | 2004

Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors

Jeffrey I. Eldridge; Timothy J. Bencic; Stephen W. Allison; David L. Beshears

Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Due to the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating-thickness temperature readings up to 1100 °C with the phosphor layer residing beneath a 100-µm-thick TBC (plasmasprayed 8 wt.% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 °C while the decay time constant was a better indicator at higher temperatures.


Surface & Coatings Technology | 2006

Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence

Jeffrey I. Eldridge; Timothy J. Bencic

Plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination, because the strong scattering exhibited by plasma-sprayed TBCs severely attenuates light transmitted through the TBC. This paper presents a new approach that indicates delamination in plasma-sprayed TBCs by utilizing a luminescent sublayer that produces significantly greater luminescence intensity from delaminated regions of the TBC. Freestanding coatings were produced with either a Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer. A NiCr backing layer was added to represent an attached substrate in some sections. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer, because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating from the Er-doped YSZ sublayer.


Journal of Materials Research | 1998

Hi-Nicalon fiber-reinforced celsian matrix composites: Influence of interface modification

Narottam P. Bansal; Jeffrey I. Eldridge

Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.


39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit | 2003

Advances in High Temperature Phosphor Thermometry for Aerospace Applications

Stephen W. Allison; Andy Hollerman; Michael R. Cates; Timothy J. Bencic; Jeffrey I. Eldridge; Carolyn Mercer

Phosphor thermometry has been used for many years for non-contact temperature measurements in hostile environments. Aerospace systems are particularly prone to adverse high temperature environments, including large blackbody background, vibration, rotation, fire/flame, pressure, or noise. These environments often restrict the use of more common thermocouples or infrared thermometric techniques. Temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to fluorescence techniques. Often the phosphor powders are suspended in binders and applied like paint or applied as high temperature sprays. Thin coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of phosphors is a function of the base matrix atoms and a small quantity of added activator or “dopant” ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. Recently, a YAG:Cr phosphor paint emitted fluorescence during short duration tests in a high Mach number hydrogen flame at 2,200 °C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This presentation will give research results applicable to the use of phosphors for aerospace thermometry. Emphasis will be placed on the selection of phosphor and binder combinations that can withstand high temperatures.


27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites: A: Ceramic Engineering and Science Proceedings, Volume 24, Issue 3 | 2002

Health Monitoring of Thermal Barrier Coatings by Mid‐Infrared Reflectance

Jeffrey I. Eldridge; Charles M. Spuckler; James A. Nesbitt; K. W. Street

Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs, particularly at MIR wavelengths (3 to 5 microns), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.


Journal of Materials Science | 2002

Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

Ramakrishana T. Bhatt; David R. Hull; Jeffrey I. Eldridge; Raymond Babuder

Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained ∼24 vol% of aligned 14 μm diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.


Measurement Science and Technology | 2015

Fiber optic thermometer using Cr-doped GdAlO3 broadband emission decay

Jeffrey I. Eldridge; Matthew D. Chambers

Luminescence decay temperature measurements are performed from 800 to 1200 °C using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor tip on a YAG single crystal fiber. As a thermographic phosphor, Cr:GdAlO3 combines the intense luminescence of transition metal dopants with the high temperature long decay times usually exhibited only by rare earth dopants. The proposed mechanism is emission by the Cr3+ dopant via the spin-allowed 4T2 → 4A2 transition supported by a reservoir state in 2E which populates (2E → ) through thermal equilibration. The relative energy levels and transition probabilities associated with the strong crystal field at the Al3+ site in the perovskite structure of GdAlO3 are favorable for suppressing thermal quenching of luminescence. Results from a single-fiber configuration sensor, based on a YAG fiber for its low background luminescence, are presented. Using a decay curve fitting procedure that accounts for background fluorescence, accuracies of better than ±5 °C are demonstrated.


TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOLUME 8: Proceedings of the Ninth International Temperature Symposium | 2013

Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence

Jeffrey I. Eldridge; Matthew D. Chambers

Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time-based temperature measurements above 1000 °C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 °C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the 2E to 4A2 radiative transition (R line) has typically...


Advanced sensor technologies for nondestructive evaluation and structural health monitoring. Conference | 2005

Smart coatings for health monitoring and nondestructive evaluation

Timothy J. Bencic; Jeffrey I. Eldridge

Luminescent coatings applications have been increased dramatically over the last decade as imaging capacities have advanced. These coatings have been used to monitor surface temperature and air pressure (oxygen sensing) in testing facilities around the world. Through the commercial suppliers of these coatings, custom assembled hardware systems and especially data reduction and analysis software, the use of smart luminescent coatings are starting to find their way in to inspection monitoring and nondestructive evaluation testing. The use of a temperature sensitive paint for example, can be a potential replacement for infrared imaging where IR techniques are limited due to access, reflections and complex geometries. Detection of the luminescent signal can use simple intensity ratio methods with synchronized pulsing systems to capture frequency responses in imaging applications. Time or frequency methods allow signals to be detected in the presence of high background noise that allow measurements that were previously unobtainable. This paper describes general luminescent sensors, detection methods and examples of coatings that are applied over test examples or embedded in materials to measure or monitor the health of a specimen.


Measurement Science and Technology | 2016

Surface temperature measurements from a stator vane doublet in a turbine afterburner flame using a YAG:Tm thermographic phosphor

Jeffrey I. Eldridge; D. G. Walker; S. L. Gollub; T. P. Jenkins; Stephen W. Allison

Phosphor thermometry measurements in turbine engine environments can be difficult because of high background radiation levels. To address this challenge, luminescence lifetime-based phosphor thermometry measurements were obtained using thulium-doped Y3Al5O12 (YAG:Tm) to take advantage of the emission wavelengths at 365 nm (1D2 → 3H6 transition) and at 456 nm (1D2 → 3F4 transition). At these wavelengths, turbine engine radiation background is reduced compared with emission from longer wavelength phosphors. Temperature measurements of YAG:Tm coatings were demonstrated using decay of both the 365 and 456 nm emission bands in a furnace environment up to 1400 °C. To demonstrate that reliable surface temperatures based on short-wavelength YAG:Tm emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative environment, measurements were obtained from a YAG:Tm-coated Honeywell stator vane doublet placed in the afterburner flame exhaust stream of the augmenter-equipped General Electric J85 turbojet test engine at the University of Tennessee Space Institute (UTSI). Using a probe designed for engine insertion, spot temperature measurements were obtained by measuring luminescence decay times over a range of steady state throttle settings as well as during an engine throttle acceleration. YAG:Tm phosphor thermometry measurements of the stator vane surface in the afterburner exhaust stream using the decay of the 456 nm emission band were successfully obtained at temperatures up to almost 1300 °C. Phosphor thermometry measurements acquired with the engine probe using the decay of the 365 nm emission band were not successful at usefully high temperatures because the probe design allowed transmission of intense unfiltered silica Raman scattering that produced photomultiplier tube saturation with extended recovery times. Recommendations are made for probe modifications that will enable temperature measurements using the 365 nm emission band decay, which will be beneficial in environments with strong reflections of combustor radiation.

Collaboration


Dive into the Jeffrey I. Eldridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas E. Wolfe

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Stephen W. Allison

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang N. Lee

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar

Li Wang

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. M. Guo

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

David L. Beshears

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge