Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey J. Babon is active.

Publication


Featured researches published by Jeffrey J. Babon.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death

Joanne M. Hildebrand; Maria C. Tanzer; Isabelle S. Lucet; Samuel N. Young; Sukhdeep Kaur Spall; Pooja Sharma; Catia Pierotti; Jean-Marc Garnier; R.J. Dobson; Andrew I. Webb; Anne Tripaydonis; Jeffrey J. Babon; Mark D. Mulcair; Martin J. Scanlon; Warren S. Alexander; Andrew F. Wilks; Peter E. Czabotar; Guillaume Lessene; James M. Murphy; John Silke

Significance The four-helix bundle (4HB) domain of Mixed Lineage Kinase Domain-Like (MLKL) bears two clusters of residues that are required for cell death by necroptosis. Mutations within a cluster centered on the α4 helix of the 4HB domain of MLKL prevented its membrane translocation, oligomerization, and ability to induce necroptosis. This cluster is composed principally of acidic residues and therefore challenges the idea that the 4HB domain engages negatively charged phospholipid membranes via a conventional positively charged interaction surface. The importance of membrane translocation to MLKL-mediated death is supported by our identification of a small molecule that binds the MLKL pseudokinase domain and retards membrane translocation to inhibit necroptotic signaling. Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein Kinase-3 (RIPK3). How MLKL causes cell death is unclear, however RIPK3–mediated phosphorylation of the activation loop in MLKL trips a molecular switch to induce necroptotic cell death. Here, we show that the MLKL pseudokinase domain acts as a latch to restrain the N-terminal four-helix bundle (4HB) domain and that unleashing this domain results in formation of a high-molecular-weight, membrane-localized complex and cell death. Using alanine-scanning mutagenesis, we identified two clusters of residues on opposing faces of the 4HB domain that were required for the 4HB domain to kill cells. The integrity of one cluster was essential for membrane localization, whereas MLKL mutations in the other cluster did not prevent membrane translocation but prevented killing; this demonstrates that membrane localization is necessary, but insufficient, to induce cell death. Finally, we identified a small molecule that binds the nucleotide binding site within the MLKL pseudokinase domain and retards MLKL translocation to membranes, thereby preventing necroptosis. This inhibitor provides a novel tool to investigate necroptosis and demonstrates the feasibility of using small molecules to target the nucleotide binding site of pseudokinases to modulate signal transduction.


Immunity | 2012

Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity

Jeffrey J. Babon; Nadia J. Kershaw; James M. Murphy; Leila N. Varghese; Artem Laktyushin; Samuel N. Young; Isabelle S. Lucet; Raymond S. Norton; Nicos A. Nicola

Janus kinases (JAKs) are key effectors in controlling immune responses and maintaining hematopoiesis. SOCS3 (suppressor of cytokine signaling-3) is a major regulator of JAK signaling and here we investigate the molecular basis of its mechanism of action. We found that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not JAK3 via an evolutionarily conserved motif unique to JAKs. Mutation of this motif led to the formation of an active kinase that could not be inhibited by SOCS3. Surprisingly, we found that SOCS3 simultaneously bound JAK and the cytokine receptor to which it is attached, revealing how specificity is generated in SOCS action and explaining why SOCS3 inhibits only a subset of cytokines. Importantly, SOCS3 inhibited JAKs via a noncompetitive mechanism, making it a template for the development of specific and effective inhibitors to treat JAK-based immune and proliferative diseases.


Nature Structural & Molecular Biology | 2013

SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition.

Nadia J. Kershaw; James M. Murphy; Nicholas P. D. Liau; Leila N. Varghese; Artem Laktyushin; Eden Whitlock; Isabelle S. Lucet; Nicos A. Nicola; Jeffrey J. Babon

The inhibitory protein SOCS3 plays a key part in the immune and hematopoietic systems by regulating signaling induced by specific cytokines. SOCS3 functions by inhibiting the catalytic activity of Janus kinases (JAKs) that initiate signaling within the cell. We determined the crystal structure of a ternary complex between mouse SOCS3, JAK2 (kinase domain) and a fragment of the interleukin-6 receptor β-chain. The structure shows that SOCS3 binds JAK2 and receptor simultaneously, using two opposing surfaces. While the phosphotyrosine-binding groove on the SOCS3 SH2 domain is occupied by receptor, JAK2 binds in a phosphoindependent manner to a noncanonical surface. The kinase-inhibitory region of SOCS3 occludes the substrate-binding groove on JAK2, and biochemical studies show that it blocks substrate association. These studies reveal that SOCS3 targets specific JAK–cytokine receptor pairs and explains the mechanism and specificity of SOCS action.


Biochemical Journal | 2014

A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties

James M. Murphy; Qingwei Zhang; Samuel N. Young; Michael L. Reese; Fiona P. Bailey; Patrick A. Eyers; Daniela Ungureanu; Henrik Hammarén; Olli Silvennoinen; Leila N. Varghese; Kelan Chen; Anne Tripaydonis; Natalia Jura; Koichi Fukuda; Jun Qin; Zachary L. Nimchuk; Mary Beth Mudgett; Sabine Elowe; Christine L. Gee; Ling Liu; Roger J. Daly; Gerard Manning; Jeffrey J. Babon; Isabelle S. Lucet

Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.


Nature Structural & Molecular Biology | 2004

Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein.

Caterina Alfano; Domenico Sanfelice; Jeffrey J. Babon; Geoff Kelly; Amanda Jacks; Stephen Curry; Maria R. Conte

The La protein is a conserved component of eukaryotic ribonucleoprotein complexes that binds the 3′ poly(U)-rich elements of nascent RNA polymerase III (pol III) transcripts to assist folding and maturation. This specific recognition is mediated by the N-terminal domain (NTD) of La, which comprises a La motif and an RNA recognition motif (RRM). We have determined the solution structures of both domains and show that the La motif adopts an α/β fold that comprises a winged-helix motif elaborated by the insertion of three helices. Chemical shift mapping experiments show that these insertions are involved in RNA interactions. They further delineate a distinct surface patch on each domain—containing both basic and aromatic residues—that interacts with RNA and accounts for the cooperative binding of short oligonucleotides exhibited by the La NTD.


Cytokine & Growth Factor Reviews | 2013

Suppression of cytokine signaling: the SOCS perspective.

Edmond M. Linossi; Jeffrey J. Babon; Douglas J. Hilton; Sandra E. Nicholson

The discovery of the Suppressor of Cytokine Signaling (SOCS) family of proteins has resulted in a significant body of research dedicated to dissecting their biological functions and the molecular mechanisms by which they achieve potent and specific inhibition of cytokine and growth factor signaling. The Australian contribution to this field has been substantial, with the initial discovery of SOCS1 by Hilton, Starr and colleagues (discovered concurrently by two other groups) and the following work, providing a new perspective on the regulation of JAK/STAT signaling. In this review, we reflect on the critical discoveries that have lead to our current understanding of how SOCS proteins function and discuss what we see as important questions for future research.


Structure | 2003

Structure of the C-terminal domain of human La protein reveals a novel RNA recognition motif coupled to a helical nuclear retention element

Amanda Jacks; Jeffrey J. Babon; Geoff Kelly; Ioannis Manolaridis; Peter D. Cary; Stephen Curry; Maria R. Conte

The La protein is an important component of ribonucleoprotein complexes that acts mainly as an RNA chaperone to facilitate correct processing and maturation of RNA polymerase III transcripts, but can also stimulate translation initiation. We report here the structure of the C-terminal domain of human La, which comprises an atypical RNA recognition motif (La225-334) and a long unstructured C-terminal tail. The central beta sheet of La225-334 reveals novel features: the putative RNA binding surface is formed by a five-stranded beta sheet and, strikingly, is largely obscured by a long C-terminal alpha helix that encompasses a recently identified nuclear retention element. Contrary to previous observations, we find that the La protein does not contain a dimerization domain.


Biochemical Journal | 2014

The molecular regulation of Janus kinase (JAK) activation

Jeffrey J. Babon; Isabelle S. Lucet; James M. Murphy; Nicos A. Nicola; Leila N. Varghese

The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domains catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.


Nature Structural & Molecular Biology | 2006

The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4-binding residues

Seth L. Masters; Shenggen Yao; Tracy A. Willson; Jian-Guo Zhang; Kirsten Palmer; Brian J. Smith; Jeffrey J. Babon; Nicos A. Nicola; Raymond S. Norton; Sandra E. Nicholson

The four mammalian SPRY domain–containing SOCS box proteins (SSB-1 to SSB-4) are characterized by a C-terminal SOCS box and a central SPRY domain. We have determined the first SPRY-domain structure, as part of SSB-2, by NMR. This domain adopts a novel fold consisting of a β-sandwich structure formed by two four-stranded antiparallel β-sheets with a unique topology. We demonstrate that SSB-1, SSB-2 and SSB-4, but not SSB-3, bind prostate apoptosis response protein-4 (Par-4). Mutational analysis of SSB-2 loop regions identified conserved structural determinants for its interaction with Par-4 and the hepatocyte growth factor receptor, c-Met. Mutations in analogous loop regions of pyrin and midline-1 SPRY domains have been shown to cause Mediterranean fever and Opitz syndrome, respectively. Our findings provide a template for SPRY-domain structure and an insight into the mechanism of SPRY-protein interaction.


Journal of Molecular Biology | 2008

The SOCS box domain of SOCS3: structure and interaction with the elonginBC-cullin5 ubiquitin ligase.

Jeffrey J. Babon; Jennifer K. Sabo; Alfreda Soetopo; Shenggen Yao; Michael F. Bailey; Jian-Guo Zhang; Nicos A. Nicola; Raymond S. Norton

Suppressor of cytokine signalling 3 (SOCS3) is responsible for regulating the cellular response to a variety of cytokines, including interleukin 6 and leukaemia inhibitory factor. Identification of the SOCS box domain led to the hypothesis that SOCS3 can associate with functional E3 ubiquitin ligases and thereby induce the degradation of bound signalling proteins. This model relies upon an interaction between the SOCS box, elonginBC and a cullin protein that forms the E3 ligase scaffold. We have investigated this interaction in vitro using purified components and show that SOCS3 binds to elonginBC and cullin5 with high affinity. The SOCS3-elonginBC interaction was further characterised by determining the solution structure of the SOCS box-elonginBC ternary complex and by deletion and alanine scanning mutagenesis of the SOCS box. These studies revealed that conformational flexibility is a key feature of the SOCS-elonginBC interaction. In particular, the SOCS box is disordered in isolation and only becomes structured upon elonginBC association. The interaction depends upon the first 12 residues of the SOCS box domain and particularly on a deeply buried, conserved leucine. The SOCS box, when bound to elonginBC, binds tightly to cullin5 with 100 nM affinity. Domains upstream of the SOCS box are not required for elonginBC or cullin5 association, indicating that the SOCS box acts as an independent binding domain capable of recruiting elonginBC and cullin5 to promote E3 ligase formation.

Collaboration


Dive into the Jeffrey J. Babon's collaboration.

Top Co-Authors

Avatar

Nicos A. Nicola

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra E. Nicholson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nadia J. Kershaw

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shenggen Yao

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Jian-Guo Zhang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Isabelle S. Lucet

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Edmond M. Linossi

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge