Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey J. Brault is active.

Publication


Featured researches published by Jeffrey J. Brault.


American Journal of Physiology-cell Physiology | 2014

SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner

Lance M. Bollinger; Carol A. Witczak; Joseph A. Houmard; Jeffrey J. Brault

Muscle-specific RING finger-1 (MuRF-1), a ubiquitin ligase and key regulator of proteasome-dependent protein degradation, is highly expressed during skeletal muscle atrophy. The transcription factor forkhead box O3 (FoxO3) induces MuRF-1 expression, but the direct role of other major atrophy-related transcription factors, such as SMAD3, is largely unknown. The goal of this study was to determine whether SMAD3 individually regulates, or with FoxO3 coordinately regulates, MuRF-1 expression. In cultured myotubes or human embryonic kidney cells, MuRF-1 mRNA content and promoter activity were increased by FoxO3 but not by SMAD3 overexpression. However, FoxO3 and SMAD3 coexpression synergistically increased MuRF-1 mRNA and promoter activity. Mutation of the SMAD-binding element (SBE) in the proximal MuRF-1 promoter or overexpression of a SMAD3 DNA-binding mutant attenuated FoxO3-dependent MuRF-1 promoter activation, showing that SMAD binding to DNA is required for optimal activation of FoxO3-induced transcription of MuRF-1. Using chromatin immunoprecipitation, SMAD3 DNA binding increased FoxO3 abundance and SBE mutation reduced FoxO3 abundance on the MuRF-1 promoter. Furthermore, SMAD3 overexpression dose-dependently increased FoxO3 protein content, and coexpression of FoxO3 and SMAD3 synergistically increased FoxO-dependent gene transcription [assessed with a FoxO response element (FRE)-driven reporter]. Collectively, these results show that SMAD3 regulates transcription of MuRF-1 by increasing FoxO3 binding at a conserved FRE-SBE motif within the proximal promoter region, and by increasing FoxO3 protein content and transcriptional activity. These data are the first to indicate that two major transcription factors regulating protein degradation, FoxO3 and SMAD3, converge to coordinately and directly regulate transcription of MuRF-1.


Physiological Genomics | 2015

Lipid exposure elicits differential responses in gene expression and DNA methylation in primary human skeletal muscle cells from severely obese women

Jill M. Maples; Jeffrey J. Brault; Brian M. Shewchuk; Carol A. Witczak; Kai Zou; Naomi S. Rowland; Monica J. Hubal; Todd M. Weber; Joseph A. Houmard

The skeletal muscle of obese individuals exhibits an impaired ability to increase the expression of genes linked with fatty acid oxidation (FAO) upon lipid exposure. The present study determined if this response could be attributed to differential DNA methylation signatures. RNA and DNA were isolated from primary human skeletal muscle cells (HSkMC) from lean and severely obese women following lipid incubation. mRNA expression and DNA methylation were quantified for genes that globally regulate FAO [PPARγ coactivator (PGC-1α), peroxisome proliferator-activated receptors (PPARs), nuclear respiratory factors (NRFs)]. With lipid oversupply, increases in NRF-1, NRF-2, PPARα, and PPARδ expression were dampened in skeletal muscle from severely obese compared with lean women. The expression of genes downstream of the PPARs and NRFs also exhibited a pattern of not increasing as robustly upon lipid exposure with obesity. Increases in CpG methylation near the transcription start site with lipid oversupply were positively related to PPARδ expression; increases in methylation with lipid were depressed in HSkMC from severely obese women. With severe obesity, there is an impaired ability to upregulate global transcriptional regulators of FAO in response to lipid exposure. Transient changes in DNA methylation patterns and differences in the methylation signature with severe obesity may play a role in the transcriptional regulation of PPARδ in response to lipid. The persistence of differential responses to lipid in HSkMC derived from lean and obese subjects supports the possibility of stable epigenetic programming of skeletal muscle cells by the respective environments.


American Journal of Physiology-endocrinology and Metabolism | 2015

Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity

Jill M. Maples; Jeffrey J. Brault; Carol A. Witczak; Sanghee Park; Monica J. Hubal; Todd M. Weber; Joseph A. Houmard; Brian M. Shewchuk

The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity.


Obesity | 2015

Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux

Lance M. Bollinger; Jonathan J. S. Powell; Joseph A. Houmard; Carol A. Witczak; Jeffrey J. Brault

Whole‐body protein metabolism is dysregulated with obesity. The goal of the study was to determine whether activity and expression of major protein degradation pathways are compromised specifically in human skeletal muscle with obesity.


Diabetes | 2014

Constitutively Active CaMKKα Stimulates Skeletal Muscle Glucose Uptake in Insulin-Resistant Mice In Vivo

J. Matthew Hinkley; Jeremie Ferey; Jeffrey J. Brault; Cheryl Smith; Laura A.A. Gilliam; Carol A. Witczak

In insulin-sensitive skeletal muscle, the expression of constitutively active Ca2+/calmodulin-dependent protein kinase kinase α (caCaMKKα) stimulates glucose uptake independent of insulin signaling (i.e., Akt and Akt-dependent TBC1D1/TBC1D4 phosphorylation). Our objectives were to determine whether caCaMKKα could stimulate glucose uptake additively with insulin in insulin-sensitive muscle, in the basal state in insulin-resistant muscle, and if so, to determine whether the effects were associated with altered TBC1D1/TBC1D4 phosphorylation. Mice were fed a control or high-fat diet (60% kcal) for 12 weeks to induce insulin resistance. Muscles were transfected with empty vector or caCaMKKα plasmids using in vivo electroporation. After 2 weeks, caCaMKKα protein was robustly expressed. In insulin-sensitive muscle, caCaMKKα increased basal in vivo [3H]-2-deoxyglucose uptake approximately twofold, insulin increased glucose uptake approximately twofold, and caCaMKKα plus insulin increased glucose uptake approximately fourfold. caCaMKKα did not increase basal TBC1D1 (Ser237, Thr590, Ser660, pan-Thr/Ser) or TBC1D4 (Ser588, Thr642, pan-Thr/Ser) phosphorylation. In insulin-resistant muscle, caCaMKKα increased basal glucose uptake approximately twofold, and attenuated high-fat diet–induced basal TBC1D1 (Thr590, pan-Thr/Ser) and TBC1D4 (Ser588, Thr642, pan-Thr/Ser) phosphorylation. In cell-free assays, CaMKKα increased TBC1D1 (Thr590, pan-Thr/Ser) and TBC1D4 (Ser588, pan-Thr/Ser) phosphorylation. Collectively, these results demonstrate that caCaMKKα stimulates glucose uptake additively with insulin, and in insulin-resistant muscle, and alters the phosphorylation of TBC1D1/TBC1D4.


Journal of Cellular Biochemistry | 2013

Selective inhibition of ATPase activity during contraction alters the activation of p38 MAP kinase isoforms in skeletal muscle.

Jeffrey J. Brault; Natalie M. Pizzimenti; John N. Dentel; Robert W. Wiseman

Muscle contractions strongly activate p38 MAP kinases, but the precise contraction‐associated sarcoplasmic event(s) (e.g., force production, energetic demands, and/or calcium cycling) that activate these kinases are still unclear. We tested the hypothesis that during contraction the phosphorylation of p38 isoforms is sensitive to the increase in ATP demand relative to ATP supply. Energetic demands were inhibited using N‐benzyl‐p‐toluene sulphonamide (BTS, type II actomyosin) and cyclopiazonic acid (CPA, SERCA). Extensor digitorum longus muscles from Swiss Webster mice were incubated in Ringers solution (37°C) with or without inhibitors and then stimulated at 10 Hz for 15 min. Muscles were immediately freeze‐clamped for metabolite and Western blot analysis. BTS and BTS + CPA treatment decreased force production by 85%, as measured by the tension time integral, while CPA alone potentiated force by 310%. In control muscles, contractions resulted in a 73% loss of ATP content and a concomitant sevenfold increase in IMP content, a measure of sustained energetic imbalance. BTS or CPA treatment lessened the loss of ATP, but BTS + CPA treatment completely eliminated the energetic imbalance since ATP and IMP levels were nearly equal to those of non‐stimulated muscles. The independent inhibition of cytosolic ATPase activities had no effect on contraction‐induced p38 MAPK phosphorylation, but combined treatment prevented the increase in phosphorylation of the γ isoform while the α/β isoforms unaffected. These observations suggest that an energetic signal may trigger phosphorylation of the p38γ isoform and also may explain how contractions differentially activate signaling pathways. J. Cell. Biochem. 114: 1445–1455, 2013.


American Journal of Physiology-endocrinology and Metabolism | 2014

Constitutive activation of CaMKKα signaling is sufficient but not necessary for mTORC1 activation and growth in mouse skeletal muscle

Jeremie Ferey; Jeffrey J. Brault; Cheryl Smith; Carol A. Witczak

Skeletal muscle loading/overload stimulates the Ca²⁺-activated, serine/threonine kinase Ca²⁺/calmodulin-dependent protein kinase kinase-α (CaMKKα); yet to date, no studies have examined whether CaMKKα regulates muscle growth. The purpose of this study was to determine if constitutive activation of CaMKKα signaling could stimulate muscle growth and if so whether CaMKKα is essential for this process. CaMKKα signaling was selectively activated in mouse muscle via expression of a constitutively active form of CaMKKα using in vivo electroporation. After 2 wk, constitutively active CaMKKα expression increased muscle weight (~10%) and protein content (~10%), demonstrating that activation of CaMKKα signaling can stimulate muscle growth. To determine if active CaMKKα expression stimulated muscle growth via increased mammalian target of rapamycin complex 1 (mTORC1) signaling and protein synthesis, [³H]phenylalanine incorporation into proteins was assessed with or without the mTORC1 inhibitor rapamycin. Constitutively active CaMKKα increased protein synthesis ~60%, and this increase was prevented by rapamycin, demonstrating a critical role for mTORC1 in this process. To determine if CaMKKα is essential for growth, muscles from CaMKKα knockout mice were stimulated to hypertrophy via unilateral ablation of synergist muscles (overload). Surprisingly, compared with wild-type mice, muscles from CaMKKα knockout mice exhibited greater growth (~15%) and phosphorylation of the mTORC1 substrate 70-kDa ribosomal protein S6 kinase (Thr³⁸⁹; ~50%), demonstrating that CaMKKα is not essential for overload-induced mTORC1 activation or muscle growth. Collectively, these results demonstrate that activation of CaMKKα signaling is sufficient but not necessary for activation of mTORC1 signaling and growth in mouse skeletal muscle.


Journal of Vascular Surgery | 2017

Diminished force production and mitochondrial respiratory deficits are strain-dependent myopathies of subacute limb ischemia

Cameron A. Schmidt; Terence E. Ryan; Chien-Te Lin; Melissa R. Iñigo; Tom D. Green; Jeffrey J. Brault; Espen E. Spangenburg; Joseph M. McClung

Objective: Reduced skeletal muscle mitochondrial function might be a contributing mechanism to the myopathy and activity based limitations that typically plague patients with peripheral arterial disease (PAD). We hypothesized that mitochondrial dysfunction, myofiber atrophy, and muscle contractile deficits are inherently determined by the genetic background of regenerating ischemic mouse skeletal muscle, similar to how patient genetics affect the distribution of disease severity with clinical PAD. Methods: Genetically ischemia protected (C57BL/6) and susceptible (BALB/c) mice underwent either unilateral subacute hind limb ischemia (SLI) or myotoxic injury (cardiotoxin) for 28 days. Limbs were monitored for blood flow and tissue oxygen saturation and tissue was collected for the assessment of histology, muscle contractile force, gene expression, mitochondrial content, and respiratory function. Results: Despite similar tissue O2 saturation and mitochondrial content between strains, BALB/c mice suffered persistent ischemic myofiber atrophy (55.3% of C57BL/6) and muscle contractile deficits (approximately 25% of C57BL/6 across multiple stimulation frequencies). SLI also reduced BALB/c mitochondrial respiratory capacity, assessed in either isolated mitochondria (58.3% of C57BL/6 at SLI on day (d)7, 59.1% of C57BL/6 at SLI d28 across multiple conditions) or permeabilized myofibers (38.9% of C57BL/6 at SLI d7; 76.2% of C57BL/6 at SLI d28 across multiple conditions). SLI also resulted in decreased calcium retention capacity (56.0% of C57BL/6) in BALB/c mitochondria. Nonischemic cardiotoxin injury revealed similar recovery of myofiber area, contractile force, mitochondrial respiratory capacity, and calcium retention between strains. Conclusions: Ischemia‐susceptible BALB/c mice suffered persistent muscle atrophy, impaired muscle function, and mitochondrial respiratory deficits during SLI. Interestingly, parental strain susceptibility to myopathy appears specific to regenerative insults including an ischemic component. Our findings indicate that the functional deficits that plague PAD patients could include mitochondrial respiratory deficits genetically inherent to the regenerating muscle myofibers. Clinical Relevance: Skeletal muscle morphology and function are key predictors of clinical manifestation and outcomes in peripheral arterial disease. Our findings show that genetic background is a critical determinant of muscle functional deficits and mitochondrial respiration. Because of the range of peripheral arterial disease manifestations, BALB/c mice provide a useful model for studying the role of muscle and mitochondrial respiratory functional abnormalities in determining morbidity and mortality outcomes in genetically susceptible patients. Novel therapies that directly target the muscle tissue response to limb ischemia could be used alone or in conjunction with current revascularization therapies to reduce morbidity and mortality outcomes in claudicants or patients with critical limb ischemia.


American Journal of Physiology-endocrinology and Metabolism | 2017

Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes

Tai-Yu Huang; Donghai Zheng; Joseph A. Houmard; Jeffrey J. Brault; Robert C. Hickner; Ronald N. Cortright

Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m2; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1-14C]palmitic acid and [1-14C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P < 0.05), 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P < 0.05), and 3) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells.


American Journal of Physiology-heart and Circulatory Physiology | 2015

AMP-activated protein kinase inhibits transforming growth factor-β-mediated vascular smooth muscle cell growth: implications for a Smad-3-dependent mechanism.

Joshua Daniel Stone; Andrew W. Holt; Jackson R Vuncannon; Jeffrey J. Brault; David A. Tulis

Dysfunctional vascular growth is a major contributor to cardiovascular disease, the leading cause of morbidity and mortality worldwide. Growth factor-induced activation of vascular smooth muscle cells (VSMCs) results in a phenotypic switch from a quiescent, contractile state to a proliferative state foundational to vessel pathology. Transforming growth factor-β (TGF-β) is a multifunctional signaling protein capable of growth stimulation via Smad signaling. Although Smad signaling is well characterized in many tissues, its role in VSM growth disorders remains controversial. Recent data from our lab and others implicate the metabolic regulator AMP-activated protein kinase (AMPK) in VSM growth inhibition. We hypothesized that AMPK inhibits VSMC proliferation by reducing TGF-β-mediated growth in a Smad-dependent fashion. Treatment of rat VSMCs with the AMPK agonist AICAR significantly decreased TGF-β-mediated activation of synthetic Smad2 and Smad3 and increased inhibitory Smad7. Flow cytometry and automated cell counting revealed that AICAR reversed TGF-β-mediated cell cycle progression at 24 h and elevated cell numbers at 48 h. TGF-β/Smad signaling increased the G0/G1 inducers cyclin D1/cyclin-dependent kinase (CDK) 4 and cyclin E/CDK2; however, AICAR reversed these events while increasing cytostatic p21. The specific role of Smad3 in AMPK-mediated reversal of TGF-β-induced growth was then explored using adenovirus-mediated Smad3 overexpression (Ad-Smad3). Ad-Smad3 cells increased cell cycle progression and cell numbers compared with Ad-GFP control cells, and these were restored to basal levels with concomitant AICAR treatment. These findings support a novel AMPK target in TGF-β/Smad3 for VSMC growth control and support continued investigation of AMPK as a possible therapeutic target for reducing vascular growth disorders.

Collaboration


Dive into the Jeffrey J. Brault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill M. Maples

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica J. Hubal

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Todd M. Weber

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Jeremie Ferey

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald A. Meyer

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge