Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey J. Hard is active.

Publication


Featured researches published by Jeffrey J. Hard.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Phenotypic plasticity and population viability: the importance of environmental predictability

Thomas E. Reed; Robin S. Waples; Daniel E. Schindler; Jeffrey J. Hard; Michael T. Kinnison

Phenotypic plasticity plays a key role in modulating how environmental variation influences population dynamics, but we have only rudimentary understanding of how plasticity interacts with the magnitude and predictability of environmental variation to affect population dynamics and persistence. We developed a stochastic individual-based model, in which phenotypes could respond to a temporally fluctuating environmental cue and fitness depended on the match between the phenotype and a randomly fluctuating trait optimum, to assess the absolute fitness and population dynamic consequences of plasticity under different levels of environmental stochasticity and cue reliability. When cue and optimum were tightly correlated, plasticity buffered absolute fitness from environmental variability, and population size remained high and relatively invariant. In contrast, when this correlation weakened and environmental variability was high, strong plasticity reduced population size, and populations with excessively strong plasticity had substantially greater extinction probability. Given that environments might become more variable and unpredictable in the future owing to anthropogenic influences, reaction norms that evolved under historic selective regimes could imperil populations in novel or changing environmental contexts. We suggest that demographic models (e.g. population viability analyses) would benefit from a more explicit consideration of how phenotypic plasticity influences population responses to environmental change.


Evolutionary Applications | 2008

Evolutionary consequences of fishing and their implications for salmon

Jeffrey J. Hard; Mart R. Gross; Mikko Heino; Ray Hilborn; Robert Kope; Richard Law; John D. Reynolds

We review the evidence for fisheries‐induced evolution in anadromous salmonids. Salmon are exposed to a variety of fishing gears and intensities as immature or maturing individuals. We evaluate the evidence that fishing is causing evolutionary changes to traits including body size, migration timing and age of maturation, and we discuss the implications for fisheries and conservation. Few studies have fully evaluated the ingredients of fisheries‐induced evolution: selection intensity, genetic variability, correlation among traits under selection, and response to selection. Most studies are limited in their ability to separate genetic responses from phenotypic plasticity, and environmental change complicates interpretation. However, strong evidence for selection intensity and for genetic variability in salmon fitness traits indicates that fishing can cause detectable evolution within ten or fewer generations. Evolutionary issues are therefore meaningful considerations in salmon fishery management. Evolutionary biologists have rarely been involved in the development of salmon fishing policy, yet evolutionary biology is relevant to the long‐term success of fisheries. Future management might consider fishing policy to (i) allow experimental testing of evolutionary responses to exploitation and (ii) improve the long‐term sustainability of the fishery by mitigating unfavorable evolutionary responses to fishing. We provide suggestions for how this might be done.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010

Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient.

Kathleen G. O'Malley; Michael J. Ford; Jeffrey J. Hard

Seasonal timing of life-history events is often under strong natural selection. The Clock gene is a central component of an endogenous circadian clock that senses changes in photoperiod (day length) and mediates seasonal behaviours. Among Pacific salmonids (Oncorhynchus spp.), seasonal timing of migration and breeding is influenced by photoperiod. To expand a study of 42 North American Chinook salmon (Oncorhynchus tshawytscha) populations, we tested whether duplicated Clock genes contribute to population differences in reproductive timing. Specifically, we examined geographical variation along a similar latitudinal gradient in the polyglutamine domain (PolyQ) of OtsClock1a and OtsClock1b among 53 populations of three species: chum (Oncorhynchus keta), coho (Oncorhynchus kisutch) and pink salmon (Oncorhynchus gorbuscha). We found evidence for variable selection on OtsClock1b that corresponds to latitudinal variation in reproductive timing among these species. We evaluated the contribution of day length and a freshwater migration index to OtsClock1b PolyQ domain variation using regression trees and found that day length at spawning explains much of the variation in OtsClock1b allele frequency among chum and Chinook, but not coho and pink salmon populations. Our findings suggest that OtsClock1b mediates seasonal adaptation and influences geographical variation in reproductive timing in some of these highly migratory species.


Evolutionary Applications | 2009

Quantifying six decades of fishery selection for size and age at maturity in sockeye salmon

Neala W. Kendall; Jeffrey J. Hard; Thomas P. Quinn

Life history traits of wild animals can be strongly influenced, both phenotypically and evolutionarily, by hunting and fishing. However, few studies have quantified fishery selection over long time periods. We used 57u2003years of catch and escapement data to document the magnitude of and trends in gillnet selection on age and size at maturity of a commercially and biologically important sockeye salmon stock. Overall, the fishery has caught larger fish than have escaped to spawn, but selection has varied over time, becoming weaker and less consistent recently. Selection patterns were strongly affected by fish age and sex, in addition to extrinsic factors including fish abundance, mesh size regulations, and fish length variability. These results revealed a more complex and changing pattern of selective harvest than the ‘larger is more vulnerable’ model, emphasizing the need for quantified, multi‐year studies before conclusions can be drawn about potential evolutionary and ecological effects of fishery selection. Furthermore, the results indicate that biologically robust escapement goals and prevention of harvest of the largest individuals may help prevent negative effects of size‐selective harvest.


Conservation Biology | 2008

Estimates of Natural Selection in a Salmon Population in Captive and Natural Environments

Michael J. Ford; Jeffrey J. Hard; Brant Boelts; Eric S. LaHood; Jason Miller

Captive breeding is a commonly used strategy for species conservation. One risk of captive breeding is domestication selection--selection for traits that are advantageous in captivity but deleterious in the wild. Domestication selection is of particular concern for species that are bred in captivity for many generations and that have a high potential to interbreed with wild populations. Domestication is understood conceptually at a broad level, but relatively little is known about how natural selection differs empirically between wild and captive environments. We used genetic parentage analysis to measure natural selection on time of migration, weight, and morphology for a coho salmon (Oncorhynchus kisutch) population that was subdivided into captive and natural components. Our goal was to determine whether natural selection acting on the traits we measured differed significantly between the captive and natural environments. For males, larger individuals were favored in both the captive and natural environments in all years of the study, indicating that selection on these traits in captivity was similar to that in the wild. For females, selection on weight was significantly stronger in the natural environment than in the captive environment in 1 year and similar in the 2 environments in 2 other years. In both environments, there was evidence of selection for later time of return for both males and females. Selection on measured traits other than weight and run timing was relatively weak. Our results are a concrete example of how estimates of natural selection during captivity can be used to evaluate this common risk of captive breeding programs.


G3: Genes, Genomes, Genetics | 2015

Quantitative genetics of migration-related traits in rainbow and steelhead trout.

Benjamin C. Hecht; Jeffrey J. Hard; Frank P. Thrower; Krista M. Nichols

Rainbow trout (Oncorhynchus mykiss) exhibit remarkable life history diversity throughout their native range, and among the most evident is variation in migratory propensity. Although some populations and ecotypes will remain resident in freshwater habitats throughout their life history, others have the ability to undertake tremendous marine migrations. Those that migrate undergo a suite of behavioral, morphological, and physiological adaptations in a process called smoltification. We describe a quantitative genetic analysis of 22 growth, size, and morphological traits in addition to overall life history classification (resident or migrant) over the temporal process of smoltification in a large multi-generation experimental pedigree (n = 16,139) of migratory and resident rainbow trout derived from a wild population, which naturally segregates for migratory propensity. We identify significant additive genetic variance and covariance among the suite of traits that make up a component of the migratory syndrome in this species. Additionally, we identify high heritability estimates for the life history classifications and observe a strong negative genetic correlation between the migratory and resident life history trajectories. Given the large heritability estimates of all of the traits that segregate between migratory and resident rainbow trout, we conclude that these traits can respond to selection. However, given the high degree of genetic correlation between these traits, they do not evolve in isolation, but rather as a suite of coordinated characters in a predictable manner.


Evolutionary Applications | 2015

Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding

Charles D. Waters; Jeffrey J. Hard; Marine S. O. Brieuc; David E. Fast; Kenneth I. Warheit; Robin S. Waples; Curtis M. Knudsen; William J. Bosch; Kerry A. Naish

Captive breeding has the potential to rebuild depressed populations. However, associated genetic changes may decrease restoration success and negatively affect the adaptive potential of the entire population. Thus, approaches that minimize genetic risks should be tested in a comparative framework over multiple generations. Genetic diversity in two captive‐reared lines of a species of conservation interest, Chinook salmon (Oncorhynchus tshawytscha), was surveyed across three generations using genome‐wide approaches. Genetic divergence from the source population was minimal in an integrated line, which implemented managed gene flow by using only naturally‐born adults as captive broodstock, but significant in a segregated line, which bred only captive‐origin individuals. Estimates of effective number of breeders revealed that the rapid divergence observed in the latter was largely attributable to genetic drift. Three independent tests for signatures of adaptive divergence also identified temporal change within the segregated line, possibly indicating domestication selection. The results empirically demonstrate that using managed gene flow for propagating a captive‐reared population reduces genetic divergence over the short term compared to one that relies solely on captive‐origin parents. These findings complement existing studies of captive breeding, which typically focus on a single management strategy and examine the fitness of one or two generations.


Evolutionary Applications | 2017

Human-mediated evolution in a threatened species? Juvenile life-history changes in Snake River salmon

Robin S. Waples; Anna Elz; Billy D. Arnsberg; James R. Faulkner; Jeffrey J. Hard; Emma Timmins-Schiffman; Linda K. Park

Evaluations of human impacts on Earths ecosystems often ignore evolutionary changes in response to altered selective regimes. Freshwater habitats for Snake River fall Chinook salmon (SRFCS), a threatened species in the US, have been dramatically changed by hydropower development and other watershed modifications. Associated biological changes include a shift in juvenile life history: Historically essentially 100% of juveniles migrated to sea as subyearlings, but a substantial fraction have migrated as yearlings in recent years. In contemplating future management actions for this species should major Snake River dams ever be removed (as many have proposed), it will be important to understand whether evolution is at least partially responsible for this life‐history change. We hypothesized that if this trait is genetically based, parents who migrated to sea as subyearlings should produce faster‐growing offspring that would be more likely to reach a size threshold to migrate to sea in their first year. We tested this with phenotypic data for over 2,600 juvenile SRFCS that were genetically matched to parents of hatchery and natural origin. Three lines of evidence supported our hypothesis: (i) the animal model estimated substantial heritability for juvenile growth rate for three consecutive cohorts; (ii) linear modeling showed an association between juvenile life history of parents and offspring growth rate; and (iii) faster‐growing juveniles migrated at greater speeds, as expected if they were more likely to be heading to sea. Surprisingly, we also found that parents reared a full year in a hatchery produced the fastest growing offspring of all—apparently an example of cross‐generational plasticity associated with artificial propagation. We suggest that SRFCS is an example of a potentially large class of species that can be considered to be “anthro‐evolutionary”—signifying those whose evolutionary trajectories have been profoundly shaped by altered selective regimes in human‐dominated landscapes.


Evolutionary Applications | 2018

Genomewide association analyses of fitness traits in captive-reared Chinook salmon: Applications in evaluating conservation strategies

Charles D. Waters; Jeffrey J. Hard; Marine S. O. Brieuc; David Fast; Kenneth I. Warheit; Curtis M. Knudsen; William J. Bosch; Kerry A. Naish

A novel application of genomewide association analyses is to use trait‐associated loci to monitor the effects of conservation strategies on potentially adaptive genetic variation. Comparisons of fitness between captive‐ and wild‐origin individuals, for example, do not reveal how captive rearing affects genetic variation underlying fitness traits or which traits are most susceptible to domestication selection. Here, we used data collected across four generations to identify loci associated with six traits in adult Chinook salmon (Oncorhynchus tshawytscha) and then determined how two alternative management approaches for captive rearing affected variation at these loci. Loci associated with date of return to freshwater spawning grounds (return timing), length and weight at return, age at maturity, spawn timing, and daily growth coefficient were identified using 9108 restriction site‐associated markers and random forest, an approach suitable for polygenic traits. Mapping of trait‐associated loci, gene annotations, and integration of results across multiple studies revealed candidate regions involved in several fitness‐related traits. Genotypes at trait‐associated loci were then compared between two hatchery populations that were derived from the same source but are now managed as separate lines, one integrated with and one segregated from the wild population. While no broad‐scale change was detected across four generations, there were numerous regions where trait‐associated loci overlapped with signatures of adaptive divergence previously identified in the two lines. Many regions, primarily with loci linked to return and spawn timing, were either unique to or more divergent in the segregated line, suggesting that these traits may be responding to domestication selection. This study is one of the first to utilize genomic approaches to demonstrate the effectiveness of a conservation strategy, managed gene flow, on trait‐associated—and potentially adaptive—loci. The results will promote the development of trait‐specific tools to better monitor genetic change in captive and wild populations.


bioRxiv | 2016

What can genomics tell us about the success of enhancement programs in anadromous Chinook salmon? A comparative analysis across four generations

Charles D. Waters; Jeffrey J. Hard; Marine S. O. Brieuc; David Fast; Kenneth I. Warheit; Robin S. Waples; Curtis M. Knudsen; Willliam J. Bosch; Kerry A. Naish

Population enhancement through the release of cultured organisms can be an important tool for marine restoration. However, there has been considerable debate about whether releases effectively contribute to conservation and harvest objectives, and whether cultured organisms impact the fitness of wild populations. Pacific salmonid hatcheries on the West Coast of North America represent one of the largest enhancement programs in the world. Molecular-based pedigree studies on one or two generations have contributed to our understanding of the fitness of hatchery-reared individuals relative to wild individuals, and tend to show that hatchery fish have lower reproductive success. However, interpreting the significance of these results can be challenging because the long-term genetic and ecological effects of releases on supplemented populations are unknown. Further, pedigree studies have been opportunistic, rather than hypothesis driven, and have not provided information on “best case” management scenarios. Here, we present a comparative, experimental approach based on genome-wide surveys of changes in diversity in two hatchery lines founded from the same population. We demonstrate that gene flow with wild individuals can reduce divergence from the wild source population over four generations. We also report evidence for consistent genetic changes in a closed hatchery population that can be explained by both genetic drift and domestication selection. The results of this study suggest that genetic risks can be minimized over at least four generations with appropriate actions, and provide empirical support for a decision-making framework that is relevant to the management of hatchery populations.

Collaboration


Dive into the Jeffrey J. Hard's collaboration.

Top Co-Authors

Avatar

Kerry A. Naish

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Robin S. Waples

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda K. Park

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Ford

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Anna Elz

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric S. LaHood

National Marine Fisheries Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge