Jeffrey J. McDonnell
University of Saskatchewan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey J. McDonnell.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2003
Murugesu Sivapalan; Kuniyoshi Takeuchi; Stewart W. Franks; V. K. Gupta; Harouna Karambiri; Venkat Lakshmi; X. Liang; Jeffrey J. McDonnell; Eduardo Mario Mendiondo; P. E. O'connell; Taikan Oki; John W. Pomeroy; Daniel Schertzer; S. Uhlenbrook; E. Zehe
Abstract Drainage basins in many parts of the world are ungauged or poorly gauged, and in some cases existing measurement networks are declining. The problem is compounded by the impacts of human-induced changes to the land surface and climate, occurring at the local, regional and global scales. Predictions of ungauged or poorly gauged basins under these conditions are highly uncertain. The IAHS Decade on Predictions in Ungauged Basins, or PUB, is a new initiative launched by the International Association of Hydrological Sciences (IAHS), aimed at formulating and implementing appropriate science programmes to engage and energize the scientific community, in a coordinated manner, towards achieving major advances in the capacity to make predictions in ungauged basins. The PUB scientific programme focuses on the estimation of predictive uncertainty, and its subsequent reduction, as its central theme. A general hydrological prediction system contains three components: (a) a model that describes the key processes of interest, (b) a set of parameters that represent those landscape properties that govern critical processes, and (c) appropriate meteorological inputs (where needed) that drive the basin response. Each of these three components of the prediction system, is either not known at all, or at best known imperfectly, due to the inherent multi-scale space—time heterogeneity of the hydrological system, especially in ungauged basins. PUB will therefore include a set of targeted scientific programmes that attempt to make inferences about climatic inputs, parameters and model structures from available but inadequate data and process knowledge, at the basin of interest and/or from other similar basins, with robust measures of the uncertainties involved, and their impacts on predictive uncertainty. Through generation of improved understanding, and methods for the efficient quantification of the underlying multi-scale heterogeneity of the basin and its response, PUB will inexorably lead to new, innovative methods for hydrological predictions in ungauged basins in different parts of the world, combined with significant reductions of predictive uncertainty. In this way, PUB will demonstrate the value of data, as well as provide the information needed to make predictions in ungauged basins, and assist in capacity building in the use of new technologies. This paper presents a summary of the science and implementation plan of PUB, with a call to the hydrological community to participate actively in the realization of these goals.
Water Resources Research | 2007
Jeffrey J. McDonnell; Murugesu Sivapalan; Kellie B. Vaché; Sarah M. Dunn; Gordon E. Grant; Roy Haggerty; Christoph Hinz; Rick Hooper; James W. Kirchner; Michael L. Roderick; John S. Selker; Markus Weiler
Field studies in watershed hydrology continue to characterize and catalogue the enormous heterogeneity and complexity of rainfall runoff processes in more and more watersheds, in different hydroclimatic regimes, and at different scales. Nevertheless, the ability to generalize these findings to ungauged regions remains out of reach. In spite of their apparent physical basis and complexity, the current generation of detailed models is process weak. Their representations of the internal states and process dynamics are still at odds with many experimental findings. In order to make continued progress in watershed hydrology and to bring greater coherence to the science, we need to move beyond the status quo of having to explicitly characterize or prescribe landscape heterogeneity in our (highly calibrated) models and in this way reproduce process complexity and instead explore the set of organizing principles that might underlie the heterogeneity and complexity. This commentary addresses a number of related new avenues for research in watershed science, including the use of comparative analysis, classification, optimality principles, and network theory, all with the intent of defining, understanding, and predicting watershed function and enunciating important watershed functional traits.
Water Resources Research | 2006
H. J. Tromp-van Meerveld; Jeffrey J. McDonnell
Analysis of subsurface stormflow from 147 storms at the 20 m long trench in the Panola Mountain Research Watershed by Tromp-van Meerveld and McDonnell (2006a) showed that there was a distinct 55 mm precipitation threshold for significant subsurface stormflow production. This second paper in the series investigates the processes responsible for this threshold response. We installed a dense spatial array of maximum rise crest stage gauges and recording wells on the hillslope and studied the temporal and spatial patterns of transient saturation at the soil-bedrock interface and its relation to subsurface stormflow measured at the trench face. Results show that while transient groundwater developed on parts of the hillslope during events smaller than 55 mm, it was not until more than 55 mm of rain fell before bedrock depressions on the hillslope were filled, water spilled over microtopographic relief in the bedrock surface, and the subsurface saturated areas became connected to the trench. When connectivity was achieved, the instantaneous subsurface stormflow rate increased more than fivefold compared to before the subsurface saturated areas were connected to the trench face. Total subsurface stormflow was more than 75 times larger when connectivity was achieved compared to when connectivity was not achieved. The fill and spill hypothesis presented in this paper is a process explanation for the observed threshold behavior of Tromp-van Meerveld and McDonnell (2006a), thereby linking patterns and processes.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013
Markus Hrachowitz; Hubert H. G. Savenije; Günter Blöschl; Jeffrey J. McDonnell; Murugesu Sivapalan; John W. Pomeroy; Berit Arheimer; Theresa Blume; Martyn P. Clark; Uwe Ehret; Fabrizio Fenicia; Jim E Freer; Alexander Gelfan; Hoshin V. Gupta; Denis A. Hughes; Rolf Hut; Alberto Montanari; Saket Pande; Doerthe Tetzlaff; Peter Troch; Stefan Uhlenbrook; Thorsten Wagener; H. C. Winsemius; Ross Woods; Erwin Zehe; Christophe Cudennec
Abstract The Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS), launched in 2003 and concluded by the PUB Symposium 2012 held in Delft (23–25 October 2012), set out to shift the scientific culture of hydrology towards improved scientific understanding of hydrological processes, as well as associated uncertainties and the development of models with increasing realism and predictive power. This paper reviews the work that has been done under the six science themes of the PUB Decade and outlines the challenges ahead for the hydrological sciences community. Editor D. Koutsoyiannis Citation Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., and Cudennec, C., 2013. A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 58 (6), 1198–1255.
Journal of Hydrology | 1997
Christopher P. Cirmo; Jeffrey J. McDonnell
We review the status of research concerning the links between hydrologic flowpaths and the biogeochemical environment controlling Nitrogen cycling and transport in near-stream saturated zones, centering on stream environments of the northern, temperate-forested zone. N retention, transformation and mobilization occur in streamside wetlands, floodplains, riparian zones, seepage faces, and the hyporheic zone. These areas are the focal point in non-point source loading of N to stream channels. They also represent areas where rapid changes in water-table and hydrologic flowpaths occur during rainfall-runoff events. It is the combination of an abrupt change in biogeochemical environment, encountering a hydrologic boundary (the terrestrial/aquatic interface or ecotone), that make the near-stream/saturated zone critical for elucidating controls of N transport and transformation. We review published studies concerning the hydrologic controls of N transport in near-stream zones, and subsequently present several geomorphic and hydrodynamic scenarios relating N biogeochemistry and its response to hydrologic events (of both varying magnitude and seasons). It is at the critical junction between temporal and spatial conditions affecting N cycling in the near-stream zone, that research priorities must now be focused.
Journal of Hydrology | 2004
Markus Weiler; Jeffrey J. McDonnell
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as ‘numerical experiments with a model driven by collective field intelligence’. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few ‘tunable parameters’. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil‐ bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions. q 2003 Elsevier B.V. All rights reserved.
Journal of Hydrology | 1999
Virginia A. Brown; Jeffrey J. McDonnell; Douglas A. Burns; Carol Kendall
Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18 O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from twotracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size. q 1999 Elsevier Science B.V. All rights reserved.
Water Resources Research | 1991
Jeffrey J. McDonnell; M. K. Stewart; I. F. Owens
A 3.8-ha watershed on the west coast of New Zealand was instrumented with suction lysimeters and automatic water samplers to determine the relationship between subsurface isotopic and chemical concentrations to those of rainfall and resulting streamflow. A t test showed that ±2‰ represented a significant difference between successive sample deuterium values. Eleven rainfall episodes were subdivided into two categories: (1) two events where stream isotopic composition did not deflect >2‰ from prestorm values, and (2) four events which demonstrated new water flushing. Detailed analysis of one 47-mm rainfall (9.8-mm runoff) event showed that old water dominated stream water exiting the watershed by 90% using a standard two-component hydrograph separation for deuterium (corroborated by Cl and electrical conductivity). Three-component hydrograph separation indicated that 12–16% was in the form of soil water, with <5% as on-channel precipitation and 80% groundwater. Analysis of over 1000 water samples revealed systematic trends in soil water and groundwater isotopic composition both in a downslope and downprofile direction. Between-storm suction lysimeter deuterium data showed a systematic dampened response to temporally variable rainfall deuterium concentrations. Multivariate cluster analysis revealed three distinct soil water/groundwater groupings, with respect to soil depth and geographic position within the watershed. Within-storm suction lysimeter sampling preserved similar groupings, indicating that the subsurface reservoir is poorly mixed on short time scales. Understanding subsurface mixing response to rainfall should greatly improve models of episodic stream response and partitioning of storm flow into waters of different age.
Water Resources Research | 1991
Michael K. Stewart; Jeffrey J. McDonnell
Three approaches to determining mean soil water residence times in a steep headwater catchment were investigated. The deuterium concentrations of soil water collected from 11 suction cup samplers at the Maimai M8 catchment were determined weekly for 14 weeks and the results compared with those of rainfall in the same period. Deuterium variations in the suction samples were considerably delayed and diminished compared with the rainfall, indicating significant storage times and mixing with soil water. Soil matrix water at shallow levels (∼200 mm depth) in unsaturated soils was relatively responsive to fresh input, but deeper water and water near the stream subject to occasional water table rises showed much less variation. Steady state and non-steady state exponential models gave similar mean residence times, ranging from 12 to more than 100 days for different locations. Three groups of soil water response were defined, comprising shallow, medium and deep (near-stream) soil locations based on the mean residence times. The nonsteady models revealed considerable week-to-week and longer variations in mean residence time for shallow soil (SL4), but indicated that steady state models could adequately represent the system in the overall period investigated. In the third approach, model types and parameters that gave the best fits to the soil water deuterium concentrations were determined. Exponential and especially dispersion models were the most satisfactory. Weighting the input (rainfall δD) partially or fully with the amount of rainfall gave much worse fits than with the unweighted input, showing that much of the rainfall bypasses the soil matrix. The best fitting dispersion model (designated DM2) yielded the most accurate mean residence times: 13 days for shallow soil (SL4), 42 days for soil at 400 mm depth (SL5), both at midslope locations, and 63 days for soil at 800 mm depth near the stream (SL2). Capillary flow was important for the unsaturated shallow soil (SL4), while advection and hydrodynamic dispersion (mixing) were more dominant for the periodically saturated (SL5) and the generally saturated (SL2) soils.
Water Resources Research | 2014
Jeffrey J. McDonnell; Keith Beven
Debates-The future of hydrological sciences : A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph