Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey J. Powers is active.

Publication


Featured researches published by Jeffrey J. Powers.


Fusion Science and Technology | 2009

Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

Kevin Kramer; Jeffery F. Latkowski; Ryan P. Abbott; John K. Boyd; Jeffrey J. Powers; Jeffrey E. Seifried

Abstract Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monte burns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using 6Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.


Nuclear Technology | 2016

Liquid Fuel Molten Salt Reactors for Thorium Utilization

Jess C Gehin; Jeffrey J. Powers

Abstract Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride based or chloride based, as either a coolant with a solid fuel (such as fluoride salt–cooled high-temperature reactors) or as a combined coolant and fuel with the fuel dissolved in a carrier salt. For liquid-fueled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as for introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with the online removal of parasitic absorbers enable the design of a thermal-spectrum breeder reactor. However, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at Oak Ridge National Laboratory in the 1950s and 1960s: the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR) with multiple configurations that could breed additional fissile material or maintain self-sustaining operation and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation resistance. MSRs have been selected as one of the Generation IV systems, and development activity has been seen in fast-spectrum MSRs, waste-burning MSRs, and MSRs fueled with low-enriched uranium as well as in more traditional thorium fuel cycle–based MSRs. This paper provides a historical background of MSR R&D efforts, surveys and summarizes many of the recent developments, and provides analysis comparing thorium-based MSRs by way of example.


Nuclear Technology | 2014

Neutronics Studies of Uranium-Bearing Fully Ceramic Microencapsulated Fuel for Pressurized Water Reactors

Nathan M George; G. Ivan Maldonado; Kurt A. Terrani; Andrew T. Godfrey; Jess C Gehin; Jeffrey J. Powers

Abstract This study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resulting operating cycle length. To match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.


Nuclear Technology | 2016

Thorium fuel cycles with externally driven systems

Nicholas R. Brown; Jeffrey J. Powers; Michael Todosow; Massimiliano Fratoni; Hans Ludewig; Eva E. Sunny; Gilad Raitses; A.L. Aronson

Abstract Externally driven subcritical systems are closely associated with thorium, partially because thorium has no naturally occurring fissile isotopes. Both accelerator-driven systems (ADSs) and fusion-driven systems have been proposed. This paper highlights key literature related to the use of thorium in externally driven systems (EDSs) and builds upon this foundation to identify potential roles for EDSs in thorium fuel cycles. In fuel cycles with natural thorium feed and no enrichment, the potential roles are (1) a once-through breed-and-burn fuel cycle and (2) a fissile breeder (mainly 233U) to support a fleet of critical reactors. If enriched uranium is used in the fuel cycle in addition to thorium, EDSs may be used to burn transuranic material. These fuel cycles were evaluated in the recently completed U.S. Department of Energy Evaluation and Screening of nuclear fuel cycle options relative to the current once-through commercial nuclear fuel cycle in the United States. The evaluation was performed with respect to nine specified high-level criteria, such as waste management and resource utilization. Each of these fuel cycles presents significant potential benefits per unit energy generation compared to the present once-through uranium fuel cycle. A parametric study indicates that fusion-fission–hybrid systems perform better than ADSs in some missions due to a higher neutron source relative to the energy required to produce it. However, both potential externally driven technology choices face significant development and deployment challenges. In addition, there are significant challenges associated with the use of thorium fuel and with the transition from a uranium-based fuel cycle to a thorium-based fuel cycle.


Nuclear Technology | 2017

A Summary of the Department of Energy’s Advanced Demonstration and Test Reactor Options Study

David A. Petti; R. Hill; Jess C Gehin; Hans D. Gougar; Gerhard Strydom; T. O’Connor; F. Heidet; J. Kinsey; Christopher Grandy; A. Qualls; Nicholas R. Brown; Jeffrey J. Powers; E. Hoffman; D. Croson

Abstract An assessment of advanced reactor technology options was conducted to provide a sound comparative technical context for future decisions by the U.S. Department of Energy (DOE) concerning these technologies. Strategic objectives were established that span a wide variety of important missions, and advanced reactor technology needs were identified based on recent DOE and international studies. A broad team of stakeholders from industry, academia, and government was assembled to develop a comprehensive set of goals, criteria, and metrics to evaluate advanced irradiation test and demonstration reactor concepts. Point designs of a select number of concepts were commissioned to provide a deeper technical basis for evaluation. The technology options were compared on the bases of technical readiness and the ability to meet the different strategic objectives. Using the study’s evaluation criteria and metrics, an independent group of experts from industry, universities, and national laboratories scored each of the point designs. Pathways to deployment for concepts of varying technical maturities were estimated for the different demonstration systems with regard to cost, schedule, and possible licensing approaches. This study also presents the trade-offs that exist among the different irradiation test reactor options in terms of the ability to conduct irradiations in support of advanced reactor research and development and to serve potential secondary missions. The main findings of the study indicate the following: (1) for industrial process heat supply, a high-temperature gas-cooled reactor is the best choice because of the high outlet temperature of the reactor and its strong passive and inherent safety characteristics; (2) for resource utilization and waste management, a sodium-cooled fast reactor (SFR) is best because of the use of a fast flux to destroy actinides; (3) to realize the advantages of a promising but less-mature technology, a fluoride salt-cooled high-temperature reactor and a lead-cooled fast reactor fare about the same; (4) for fulfilling the needs of a materials test reactor, a SFR is considered best because of its ability to produce high fast flux, incorporate test loops, and provide additional large volumes for testing.


Archive | 2017

Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor

Benjamin R. Betzler; Jeffrey J. Powers; Andrew Worrall; Sean Robertson; Leslie Dewan; Mark Massie

This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.


Nuclear Technology | 2016

Analysis of key safety metrics of thorium utilization in LWRs

Brian J Ade; Andrew Worrall; Jeffrey J. Powers; Steve Bowman

Abstract Thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel (233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2) or that add fertile thorium (ThO2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO2 + ThO2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO2 + UO2 and ThO2 + PuO2 against those of UO2 and typical UO2 + PuO2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of knowledge gaps that require additional analysis or research to develop a technical basis for the licensing of thorium fuel are identified.


Nuclear Technology | 2014

A Neutronic Investigation of the Use of Fully Ceramic Microencapsulated Fuel for Pu/Np Burning in PWRs

Cole Gentry; Ivan Maldonado; Andrew T. Godfrey; Kurt A. Terrani; Jess C Gehin; Jeffrey J. Powers

Abstract An investigation of the utilization of TRistructural-ISOtropic (TRISO)-coated fuel particles for the burning of plutonium/neptunium (Pu/Np) isotopes in typical Westinghouse four-loop pressurized water reactors is presented. Though numerous studies have evaluated the burning of transuranic isotopes in light water reactors (LWRs), this work differentiates itself by employing Pu/Np-loaded TRISO particles embedded within a silicon carbide (SiC) matrix and formed into pellets, constituting the fully ceramic microencapsulated (FCM) fuel concept that can be loaded into standard LWR fuel element cladding. This approach provides the capability of Pu/Np burning and, by virtue of the multibarrier TRISO particle design and SiC matrix properties, will allow for greater burnup of Pu/Np material, plus improved fuel reliability and thermal performance. In this study, a variety of heterogeneous assembly layouts, which utilize a mix of FCM rods and typical UO2 rods, and core loading patterns were analyzed to demonstrate the neutronic feasibility of Pu/Np-loaded TRISO fuel. The assembly and core designs herein reported are not fully optimized and require fine-tuning to flatten power peaks; however, the progress achieved thus far strongly supports the conclusion that with further rod/assembly/core loading and placement optimization, Pu/Np-loaded TRISO fuel and core designs that are capable of balancing Pu/Np production and destruction can be designed within the standard constraints for thermal and reactivity performance in pressurized water reactors.


Fusion Science and Technology | 2011

Adjoint-based uncertainty analysis for essential reactions in a laser inertial fusion engine

Jeffrey E. Seifried; Massimiliano Fratoni; Kevin J. Kramer; Jeffery F. Latkowski; Per F. Peterson; Jeffrey J. Powers; Janine M. Taylor

Abstract This study establishes a procedure for constructing explicit and adjoint-based implicit sensitivities with MCNP5. Using these methods, an instantaneous sensitivity-based uncertainty analysis is performed on the depleted uranium hybrid LIFE (Laser Inertial Fusion Energy) blanket. Explicit sensitivities and uncertainties are calculated for (n, 2n), tritium production, fission, and radiative capture reaction rates during the fuel lifecycle. Nuclear data uncertainties and Monte Carlo counting precision are compared in a convergence study and the compounding of the two is quantified to gauge the validity of the analysis. A multi-group cross-section library is generated for adjoint calculations and selected adjoint distributions are shown and discussed.


Nuclear Science and Engineering | 2018

A Review of Molten Salt Reactor Kinetics Models

Daniel Wooten; Jeffrey J. Powers

Abstract Interest in circulating fuel reactors (CFRs), particularly molten salt reactors (MSRs) of the fluid fuel type, has been growing in the last two decades. Starting with a resurgence of interest in Europe, there have been a growing number of methods proposed and codes developed to model the kinetics of CFRs, which is a capability essential to the design and evaluation of such reactors. This work first reviews the physical phenomena unique to CFRs in light of current research and how CFR kinetics are impacted by these considerations. In general, it is found that the movement of delayed neutron precursors (DNPs) through the primary loop has significant impacts on transients at low reactor powers or those with significant spatial components such as a change in the primary loop mass flow rate. Effects on the neutron flux are exceedingly minimal and entirely negligible. An extensive review of published models and methods for simulating CFR kinetics is presented, along with transient simulations in fast and thermal neutron flux systems using representative codes from each of the main modeling categories. Comparisons among methods are presented as are recommendations for their use or nonuse in various transient and work-flow scenarios. In general, it is recommended that time-resolved, multigroup neutron diffusion approaches be used to establish ranges of applicability for point reactor kinetics (PRK)–based approaches that themselves may not be applicable for all modeling situations. In such cases, it is suggested that quasi-static approaches be used where PRK-based approaches cannot be used. Finally, a review of common assumptions used in these models is presented, along with an evaluation of their impact on model performance. It is found that neglecting turbulent diffusion in open core–type CFRs is a poor assumption that leads to an underestimation of the reduction of the delayed neutron fraction. Additionally, it is seen that exclusion of secondary heat transfer loops in models leads to underestimation of transient peaks and troughs.

Collaboration


Dive into the Jeffrey J. Powers's collaboration.

Top Co-Authors

Avatar

Andrew Worrall

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jess C Gehin

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicholas R. Brown

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kurt A. Terrani

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Benjamin R. Betzler

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffery F. Latkowski

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nathan M George

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin R Robb

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge