Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey L. Barr is active.

Publication


Featured researches published by Jeffrey L. Barr.


Neuropharmacology | 2010

Withdrawal from chronic amphetamine produces persistent anxiety-like behavior but temporally-limited reductions in monoamines and neurogenesis in the adult rat dentate gyrus

Jeffrey L. Barr; Kenneth J. Renner; Gina L. Forster

Acute amphetamine administration activates monoaminergic pathways and increases systemic corticosterone, both of which influence anxiety states and adult dentate gyrus neurogenesis. Chronic amphetamine increases anxiety states in rats when measured at 24 h and at 2 weeks of withdrawal. However, the effects of chronic amphetamine exposure and withdrawal on long term anxiety-like behavior and adult neurogenesis in the dentate gyrus are unknown. Adult male rats were administered amphetamine (2.5 mg/kg, ip.) daily for two weeks. Anxiety-like behaviors were increased markedly in amphetamine-treated rats following four weeks of withdrawal from amphetamine. Plasma corticosterone level was unaltered by amphetamine treatment or withdrawal. However, norepinephrine and serotonin concentrations were selectively reduced in the dentate gyrus 20 h following amphetamine treatment. This effect did not persist through the four week withdrawal period. In separate experiments, rats received bromodeoxyuridine to label cells in S-phase, prior to or immediately following amphetamine treatment. Newly generated cells were quantified to measure extent of progenitor cell proliferation and neurogenesis following treatment or withdrawal. Progenitor cell proliferation and neurogenesis were not significantly affected by amphetamine exposure when measured 20 h following the last amphetamine treatment. However, neurogenesis in the dentate gyrus was reduced after four weeks of withdrawal when compared to saline-pretreated rats. Overall, our findings indicate that withdrawal from chronic amphetamine leads to persistent anxiety-like behavior which may be maintained by reduced neurogenesis in the dentate gyrus at this protracted withdrawal time point. However, neurogenesis is unaffected at earlier withdrawal time points where anxiety states emerge, suggesting different mechanisms may underlie the emergence of anxiety states during amphetamine withdrawal.


Experimental Neurology | 2012

Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors.

Danielle L. Meyer; Daniel R. Davies; Jeffrey L. Barr; Pasquale Manzerra; Gina L. Forster

Recent reports suggest that experiencing a mild closed head trauma or mild traumatic brain injury (mTBI) is associated with a greater incidence of anxiety disorders. Dysfunction of limbic structures, such as the medial prefrontal cortex, amygdala and hippocampus, is associated with the symptoms of anxiety disorders. Therefore, the goal of the current studies was to characterize the consequences of closed mTBI on these limbic structures and associated fear and anxiety-related behaviors. A weight-drop procedure was employed to induce mTBI in male rats. Rats were transcardically perfused 4 or 9 days following exposure to mTBI or control procedures, and neuronal number, brain region area, and the number of apoptotic cells in each region were determined. In separate groups of rats, the effects of mTBI on anxiety-like behaviors, motor function, nociception, and acquisition, retention and extinction of contextual fear were also assessed. Findings suggest that mTBI was associated with significant neuronal cell loss in the CA1 region of the dorsal hippocampus and increased cell number in subregions of the amygdala, both of which appear to be related to alterations to apoptosis in these regions following mTBI. Furthermore, mTBI increased expression of anxiety-like behaviors and conditioned fear, with no effect on motor performance or nociception. Overall, a single impact to the skull to mimic mTBI in rats produces discrete alterations to neuronal numbers within the limbic system and specific emotional deficits, providing a potential neurobiological link between mTBI and anxiety disorders.


PLOS ONE | 2014

The GSK3 Signaling Pathway Is Activated by Cocaine and Is Critical for Cocaine Conditioned Reward in Mice

Jonathan S. Miller; Jeffrey L. Barr; Lauren J. Harper; Rachel L. Poole; Thomas J. Gould; Ellen M. Unterwald

The Akt - GSK3 signaling pathway has been recently implicated in psychostimulant-induced behavioral and cellular effects. Here, the ability of cocaine to regulate the activity of Akt and GSK3 was investigated by measuring the phosphorylation states of the two kinases. The anatomical specificity of the response was determined, as was the contributions of dopamine and NMDA receptors to the actions of cocaine. As GSK3 activity was found to be increased by cocaine, subsequent experiments investigated the importance of GSK3 activation in cocaine conditioned reward. Adult male CD-1 mice were injected with cocaine or saline, and levels of phosphorylated Akt and GSK3α/β were measured 30 minutes later. Acute administration of cocaine significantly decreased the phosphorylation of Akt-Thr308 (pAkt-Thr308) and GSK3β in the caudate putamen and nucleus accumbens core, without altering pAkt-Ser473 and pGSK3α. To investigate the role of dopamine and NMDA receptors in the regulation of Akt and GSK3 by cocaine, specific receptor antagonists were administered prior to cocaine. Blockade of dopamine D2 receptors with eticlopride prevented the reduction of pAkt-Thr308 produced by cocaine, whereas antagonists at dopamine D1, dopamine D2 or glutamatergic NMDA receptors each blocked cocaine-induced reductions in pGSK3β. The potential importance of GSK3 activity in the rewarding actions of cocaine was determined using a cocaine conditioned place preference procedure. Administration of the selective GSK3 inhibitor, SB 216763, prior to cocaine conditioning sessions blocked the development of cocaine place preference. In contrast, SB 216763 did not alter the acquisition of a contextual fear conditioning response, demonstrating that SB 216763 did not globally inhibit contextual learning processes. The results of this study indicate that phosphorylation of GSK3β is reduced, hence GSK3β activity is increased following acute cocaine, an effect that is contingent upon both dopaminergic and glutamatergic receptors. Further, GSK3 activity is required for the development of cocaine conditioned reward.


Neuroscience | 2011

Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment.

Jeffrey L. Barr; Gina L. Forster

The ventral hippocampus modulates anxiety-like behavior in rats, and serotonergic transmission within the hippocampus facilitates adaptation to stress. Chronic amphetamine treatment results in anxiety-like behavior in rats and reduced monoamine concentrations in the ventral hippocampus. Since reduced hippocampal serotonergic transmission in response to stress is observed in rats that display high anxiety-like behavior, anxiety states in amphetamine-treated rats may be associated with reduced stress-related serotonergic transmission in the hippocampus. Therefore, using in vivo microdialysis in anesthetized rats, we investigated the effect of corticosterone infused locally into the ventral hippocampus on serotonergic transmission, and the effect of chronic amphetamine pretreatment on corticosteroid receptor protein expression and the corticosterone-induced serotonergic response. Extracellular serotonin in the ventral hippocampus was increased by corticosterone in drug naive rats, and this corticosterone-induced serotonin augmentation was blocked by the glucocorticoid receptor antagonist mifepristone. Furthermore, chronic pretreatment with amphetamine abolished the serotonin response to physiologically relevant corticosterone levels and reduced glucocorticoid receptor protein expression. Together, our results suggest that chronic amphetamine exposure reduces serotonergic neurotransmission, in part via alterations to glucocorticoid receptor-facilitation of serotonin release in the rat ventral hippocampus. Reduced serotonergic activity in the ventral hippocampus may contribute to altered stress responses and adaptive coping following repeated drug exposure.


European Journal of Neuroscience | 2013

Influence of chronic amphetamine treatment and acute withdrawal on serotonin synthesis and clearance mechanisms in the rat ventral hippocampus.

Jeffrey L. Barr; Jamie L. Scholl; Rajeshwari R. Solanki; Michael J. Watt; Christopher A. Lowry; Kenneth J. Renner; Gina L. Forster

Amphetamine withdrawal in both humans and rats is associated with increased anxiety states, which are thought to contribute to drug relapse. Serotonin in the ventral hippocampus mediates affective behaviors, and reduced serotonin levels in this region are observed in rat models of high anxiety, including during withdrawal from chronic amphetamine. This goal of this study was to understand the mechanisms by which reduced ventral hippocampus serotonergic neurotransmission occurs during amphetamine withdrawal. Serotonin synthesis (assessed by accumulation of serotonin precursor as a measure of the capacity of in vivo tryptophan hydroxylase activity), expression of serotonergic transporters, and in vivo serotonergic clearance using in vivo microdialysis were assessed in the ventral hippocampus in adult male Sprague Dawley rats at 24 h withdrawal from chronic amphetamine. Overall, results showed that diminished extracellular serotonin at 24 h withdrawal from chronic amphetamine was not accompanied by a change in capacity for serotonin synthesis (in vivo tryptophan hydroxylase activity), or serotonin transporter expression or function in the ventral hippocampus, but instead was associated with increased expression and function of organic cation transporters (low‐affinity, high‐capacity serotonin transporters). These findings suggest that 24 h withdrawal from chronic amphetamine reduces the availability of extracellular serotonin in the ventral hippocampus by increasing organic cation transporter‐mediated serotonin clearance, which may represent a future pharmacological target for reversing anxiety states during drug withdrawal.


Journal of Neurochemistry | 2014

Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression

Jeffrey L. Barr; Gina L. Forster; Ellen M. Unterwald

Dopaminergic neurotransmission in the nucleus accumbens is important for various reward‐related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague–Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus‐mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N‐methyl‐d‐aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal‐nucleus accumbens communication, in part through changes in glutamate receptor composition.


Cell Calcium | 2015

Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

Jeffrey L. Barr; Elena Deliu; G. Cristina Brailoiu; Pingwei Zhao; Guang Yan; Mary E. Abood; Ellen M. Unterwald; Eugen Brailoiu

Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway identified in vitro.


Hippocampus | 2015

Activity-Regulated Gene Expression in Immature Neurons in the Dentate Gyrus Following Re-Exposure to a Cocaine-Paired Environment

Jeffrey L. Barr; Ellen M. Unterwald

Intense craving for drug and relapse are observed in addicts who are exposed to environmental stimuli associated with drug‐taking behavior even after long periods of abstinence. The hippocampus is a brain region known to be involved in contextual processing, taking place predominantly in the septal hippocampus, and emotional processing, taking place predominantly in the temporal hippocampus. Conditioned place preference is an animal model of context‐conditioned reward. The dentate gyrus is a hippocampal sub‐region particularly important for the acquisition of cocaine‐induced place preference and is a site of continuous neurogenesis, which has been implicated in the vulnerability to drug‐taking behavior. Therefore, these experiments explored the role of newly generated neurons in drug reward‐context association by examining the activation, as determined by expression of the immediate early gene cfos, of young and mature granule cells in the septal and temporal dentate gyrus of adult rats that were re‐exposed to a drug‐paired environment following the development of cocaine place preference. The overall level of cfos expression was increased in both the septal and temporal dentate gyrus of animals that developed place preference and were re‐exposed to the drug paired environment compared with re‐exposure to a neutral environment. Overall level of neurogenesis, as detected by the S‐phase marker 5′‐bromo‐2′‐deoxyuridine (BrdU) and the immature neuron marker doublecortin (DCX), was unaltered by cocaine conditioning. However, the number of activated new neurons (DCX + cfos) was greater in the temporal dentate gyrus of cocaine‐conditioned rats re‐exposed to the drug‐paired environment as compared to those re‐exposed to a neutral environment. Further understanding of the role of dentate gyrus neurogenesis on the conditioned effects of drugs of abuse may provide new insights into the role of this process in the expression of addictive behaviors.


British Journal of Pharmacology | 2015

Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

Jeffrey L. Barr; B A Rasmussen; Christopher S. Tallarida; Jamie L. Scholl; Gina L. Forster; Ellen M. Unterwald; Scott M. Rawls

Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens.


Neuroscience | 2017

Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus

Eugen Brailoiu; Matthew McGuire; Shadaria A. Shuler; Elena Deliu; Jeffrey L. Barr; Mary E. Abood; G. Cristina Brailoiu

Bradykinin (BK), a component of the kallikrein-kininogen-kinin system exerts multiple effects via B1 and B2 receptor activation. In the cardiovascular system, bradykinin has cardioprotective and vasodilator properties. We investigated the effect of BK on cardiac-projecting neurons of nucleus ambiguus, a key site for the parasympathetic cardiac regulation. BK produced a dose-dependent increase in cytosolic Ca2+ concentration. Pretreatment with HOE140, a B2 receptor antagonist, but not with R715, a B1 receptor antagonist, abolished the response to BK. A selective B2 receptor agonist, but not a B1 receptor agonist, elicited an increase in cytosolic Ca2+ similarly to BK. Inhibition of N-type voltage-gated Ca2+ channels with ω-conotoxin GVIA had no effect on the Ca2+ signal produced by BK, while pretreatment with ω-conotoxin MVIIC, a blocker of P/Q-type of Ca2+ channels, significantly diminished the effect of BK. Pretreatment with xestospongin C and 2-aminoethoxydiphenyl borate, antagonists of inositol 1,4,5-trisphosphate receptors, abolished the response to BK. Inhibition of ryanodine receptors reduced the BK-induced Ca2+ increase, while disruption of lysosomal Ca2+ stores with bafilomycin A1 did not affect the response. BK produced a dose-dependent depolarization of nucleus ambiguus neurons, which was prevented by the B2 receptor antagonist. In vivo studies indicate that microinjection of BK into nucleus ambiguus elicited bradycardia in conscious rats via B2 receptors. In summary, in cardiac vagal neurons of nucleus ambiguus, BK activates B2 receptors promoting Ca2+ influx and Ca2+ release from endoplasmic reticulum, and membrane depolarization; these effects are translated in vivo by bradycardia.

Collaboration


Dive into the Jeffrey L. Barr's collaboration.

Top Co-Authors

Avatar

Gina L. Forster

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie L. Scholl

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Renner

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle L. Meyer

University of South Dakota

View shared research outputs
Researchain Logo
Decentralizing Knowledge