Jeffrey L. Brodsky
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey L. Brodsky.
Nature Reviews Molecular Cell Biology | 2008
Shruthi S. Vembar; Jeffrey L. Brodsky
Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin–proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities.
Traffic | 2008
Kunio Nakatsukasa; Jeffrey L. Brodsky
Secretory and membrane proteins that fail to fold in the endoplasmic reticulum (ER) are retained and may be sorted for ER‐associated degradation (ERAD). During ERAD, ER‐associated components such as molecular chaperones and lectins recognize folding intermediates and specific oligosaccharyl modifications on ERAD substrates. Substrates selected for ERAD are then targeted for ubiquitin‐ and proteasome‐mediated degradation. Because the catalytic steps of the ubiquitin–proteasome system reside in the cytoplasm, soluble ERAD substrates that reside in the ER lumen must be retrotranslocated back to the cytoplasm prior to degradation. In contrast, it has been less clear how polytopic, integral membrane substrates are delivered to enzymes required for ubiquitin conjugation and to the proteasome. In this review, we discuss recent studies addressing how ERAD substrates are recognized, ubiquitinated and delivered to the proteasome and then survey current views of how soluble and integral membrane substrates may be retrotranslocated.
Molecular and Cellular Biology | 1997
Ashok Srinivasan; Amie J. McClellan; Jai V. Vartikar; Ian Marks; Paul G. Cantalupo; Yun Li; Peter Whyte; Kathleen Rundell; Jeffrey L. Brodsky; James M. Pipas
Simian virus 40 (SV40) encodes two proteins, large T antigen and small t antigen that contribute to virus-induced tumorigenesis. Both proteins act by targeting key cellular regulatory proteins and altering their function. Known targets of the 708-amino-acid large T antigen include the three members of the retinoblastoma protein family (pRb, p107, and p130), members of the CBP family of transcriptional adapter proteins (cap-binding protein [CBP], p300, and p400), and the tumor suppressor p53. Small t antigen alters the activity of phosphatase pp2A and transactivates the cyclin A promoter. The first 82 amino acids of large T antigen and small t antigen are identical, and genetic experiments suggest that an additional target(s) important for transformation interacts with these sequences. This region contains a motif similar to the J domain, a conserved sequence found in the DnaJ family of molecular chaperones. We show here that mutations within the J domain abrogate the ability of large T antigen to transform mammalian cells. To examine whether a purified 136-amino-acid fragment from the T antigen amino terminus acts as a DnaJ-like chaperone, we investigated whether this fragment stimulates the ATPase activity of two hsc70s and discovered that ATP hydrolysis is stimulated four- to ninefold. In addition, ATPase-defective mutants of full-length T antigen, as well as wild-type small t antigen, stimulated the ATPase activity of hsc70. T antigen derivatives were also able to release an unfolded polypeptide substrate from an hsc70, an activity common to DnaJ chaperones. Because the J domain of T antigen plays essential roles in viral DNA replication, transcriptional control, virion assembly, and tumorigenesis, we conclude that this region may chaperone the rearrangement of multiprotein complexes.
Cell | 2008
Kunio Nakatsukasa; Gregory Huyer; Susan Michaelis; Jeffrey L. Brodsky
It remains unclear how misfolded membrane proteins are selected and destroyed during endoplasmic reticulum-associated degradation (ERAD). For example, chaperones are thought to solubilize aggregation-prone motifs, and some data suggest that these proteins are degraded at the ER. To better define how membrane proteins are destroyed, the ERAD of Ste6p(*), a 12 transmembrane protein, was reconstituted. We found that specific Hsp70/40s act before ubiquitination and facilitate Ste6p(*) association with an E3 ubiquitin ligase, suggesting an active role for chaperones. Furthermore, polyubiquitination was a prerequisite for retrotranslocation, which required the Cdc48 complex and ATP. Surprisingly, the substrate was soluble, and extraction was independent of a ubiquitin chain extension enzyme (Ufd2p). However, Ufd2p increased the degree of ubiquitination and facilitated degradation. These data indicate that polytopic membrane proteins can be extracted from the ER, and define the point of action of chaperones and the requirement for Ufd2p during membrane protein quality control.
Molecular Cell | 2010
Jin Mi Heo; Nurit Livnat-Levanon; Eric B. Taylor; Kevin T. Jones; Noah Dephoure; Julia Ring; Jianxin Xie; Jeffrey L. Brodsky; Frank Madeo; Steven P. Gygi; Kaveh Ashrafi; Michael H. Glickman; Jared Rutter
We show that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress. Cells lacking Vms1 show progressive mitochondrial failure, hypersensitivity to oxidative stress, and decreased chronological life span. Both yeast and mammalian Vms1 stably interact with Cdc48/VCP/p97, a component of the ubiquitin/proteasome system with a well-defined role in endoplasmic reticulum-associated protein degradation (ERAD), wherein misfolded ER proteins are degraded in the cytosol. We show that oxidative stress triggers mitochondrial localization of Cdc48 and this is dependent on Vms1. When this system is impaired by mutation of Vms1, ubiquitin-dependent mitochondrial protein degradation, mitochondrial respiratory function, and cell viability are compromised. We demonstrate that Vms1 is a required component of an evolutionarily conserved system for mitochondrial protein degradation, which is necessary to maintain mitochondrial, cellular, and organismal viability.
Current Biology | 2007
Joanna Jelenska; Nan Yao; Boris A. Vinatzer; Christine M. Wright; Jeffrey L. Brodsky; Jean T. Greenberg
BACKGROUND The plant pathogen Pseudomonas syringae injects 20-40 different proteins called effectors into host plant cells, yet the functions and sites of action of these effectors in promoting pathogenesis are largely unknown. Plants in turn defend themselves against P. syringae by activating the salicylic acid (SA)-mediated signaling pathway. The P. syringae-specific HopI1 effector has a putative chloroplast-targeting sequence and a J domain. J domains function by activating 70 kDa heat-shock proteins (Hsp70). RESULTS HopI1 is a ubiquitous P. syringae virulence effector that acts inside plant cells. When expressed in plants, HopI1 localizes to chloroplasts, the site of SA synthesis. HopI1 causes chloroplast thylakoid structure remodeling and suppresses SA accumulation. HopI1s C terminus has bona fide J domain activity that is necessary for HopI1-mediated virulence and thylakoid remodeling. Furthermore, HopI1-expressing plants have increased heat tolerance, establishing that HopI1 can engage the plant stress-response machinery. CONCLUSIONS These results strongly suggest that chloroplast Hsp70 is targeted by the P. syringae HopI1 effector to promote bacterial virulence by suppressing plant defenses. The targeting of Hsp70 function through J domain proteins is known to occur in a mammalian virus, SV40. However, this is the first example of a bacterial pathogen exploiting a J domain protein to promote pathogenesis through alterations of chloroplast structure and function.
Trends in Cell Biology | 1997
Jeffrey L. Brodsky; Ardythe A. McCracken
A protein-degradation pathway associated with the endoplasmic reticulum (ER) can selectively remove polypeptides from the secretory pathway. The mechanisms of this ER-associated protein degradation were obscure, but recent studies using both yeast and mammalian cells have indicated that substrates for degradation are targeted to the cytosol where proteolysis is catalysed by the proteasome. The degradation process is now known to comprise at least three distinct events: first, recognition of a polypeptide for degradation; second, efflux of this substrate from the ER to the cytosol; and, finally, degradation by the proteasome. This review summarizes recent advances in understanding how each of these steps is achieved.
Current Topics in Medicinal Chemistry | 2006
Jeffrey L. Brodsky; Gabriela Chiosis
Molecular chaperones are best known for their ability to aid in the solubilization of mis-folded proteins, and as a result play essential roles in protein folding, degradation, and transport. However, many molecular chaperones also play essential roles in signal transduction cascades. For example, Hsp70 molecular chaperones are a highly conserved, abundant class of chaperones that are found in every species and in nearly every cellular compartment in eukaryotes. In addition to their well-established roles in facilitating protein folding and in the targeting of proteins to organelles and to proteolytic machines, Hsp70s are anti-apoptotic and inhibition of Hsp70 function in some cases is sufficient to induce tumor cell death. Hsp70 function is also vital for the replication of viruses. Based on these data, small molecule Hsp70 modulators might, in principle, be used for the treatment of specific cancers, infections, and protein conformational diseases. In this review, we summarize the structural and functional characteristics of Hsp70 chaperones, and then discuss their roles in cellular physiology. Finally, we will review the recent discovery of small molecules that alter Hsp70 expression and function.
Journal of Biological Chemistry | 2004
Sheara W. Fewell; Christine Smith; Michael A. Lyon; Teodora Pene Dumitrescu; Peter Wipf; Billy W. Day; Jeffrey L. Brodsky
The molecular chaperone and cytoprotective activities of the Hsp70 and Hsp40 chaperones represent therapeutic targets for human diseases such as cancer and those that arise from defects in protein folding; however, very few Hsp70 and no Hsp40 modulators have been described. Using an assay for ATP hydrolysis, we identified and screened small molecules with structural similarity to 15-deoxyspergualin and NSC 630668-R/1 for their effects on endogenous and Hsp40-stimulated Hsp70 ATPase activity. Several of these compounds modulated Hsp70 ATPase activity, consistent with the action of NSC 630668-R/1 observed previously (Fewell, S. W., Day, B. W., and Brodsky, J. L. (2001) J. Biol. Chem. 276, 910–914). In contrast, three compounds inhibited the ability of Hsp40 to stimulate Hsp70 ATPase activity but did not affect the endogenous activity of Hsp70. Two of these agents also compromised the Hsp70/Hsp40-mediated post-translational translocation of a secreted pre-protein in vitro. Together, these data indicate the potential for continued screening of small molecule Hsp70 effectors and that specific modulators of Hsp70-Hsp40 interaction can be obtained, potentially for future therapeutic use.
Current Opinion in Cell Biology | 2011
Jeffrey L. Brodsky; William R. Skach
The evolution of eukaryotes was accompanied by an increased need for intracellular communication and cellular specialization. Thus, a more complex collection of secreted and membrane proteins had to be synthesized, modified, and folded. The endoplasmic reticulum (ER) thereby became equipped with devoted enzymes and associated factors that both catalyze the production of secreted proteins and remove damaged proteins. A means to modify ER function to accommodate and destroy misfolded proteins also evolved. Not surprisingly, a growing number of human diseases are linked to various facets of ER function. Each of these topics will be discussed in this article, with an emphasis on recent reports in the literature that employed diverse models.