Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey L. Brown is active.

Publication


Featured researches published by Jeffrey L. Brown.


Cancer Cell | 2011

Targeting the ANG2/TIE2 Axis Inhibits Tumor Growth and Metastasis by Impairing Angiogenesis and Disabling Rebounds of Proangiogenic Myeloid Cells

Roberta Mazzieri; Ferdinando Pucci; Davide Moi; Erika Zonari; Anna Ranghetti; Alvise Berti; Letterio S. Politi; Bernhard Gentner; Jeffrey L. Brown; Luigi Naldini; Michele De Palma

Tumor-infiltrating myeloid cells convey proangiogenic programs that counteract the efficacy of antiangiogenic therapy. Here, we show that blocking angiopoietin-2 (ANG2), a TIE2 ligand and angiogenic factor expressed by activated endothelial cells (ECs), regresses the tumor vasculature and inhibits progression of late-stage, metastatic MMTV-PyMT mammary carcinomas and RIP1-Tag2 pancreatic insulinomas. ANG2 blockade did not inhibit recruitment of MRC1(+) TIE2-expressing macrophages (TEMs) but impeded their upregulation of Tie2, association with blood vessels, and ability to restore angiogenesis in tumors. Conditional Tie2 gene knockdown in TEMs was sufficient to decrease tumor angiogenesis. Our findings support a model wherein the ANG2-TIE2 axis mediates cell-to-cell interactions between TEMs and ECs that are important for tumor angiogenesis and can be targeted to induce effective antitumor responses.


Molecular Cancer Therapeutics | 2010

A Human Monoclonal Anti-ANG2 Antibody Leads to Broad Antitumor Activity in Combination with VEGF Inhibitors and Chemotherapy Agents in Preclinical Models

Jeffrey L. Brown; Z. Alexander Cao; Maria Pinzon-Ortiz; Jane Kendrew; Corinne Reimer; Shenghua Wen; Joe Q. Zhou; Mohammad Tabrizi; Steve Emery; Brenda McDermott; Lourdes Pablo; Patricia Mccoon; Vahe Bedian; David C. Blakey

Localized angiopoietin-2 (Ang2) expression has been shown to function as a key regulator of blood vessel remodeling and tumor angiogenesis, making it an attractive candidate for antiangiogenic therapy. A fully human monoclonal antibody (3.19.3) was developed, which may have significant pharmaceutical advantages over synthetic peptide-based approaches in terms of reduced immunogenicity and increased half-life to block Ang2 function. The 3.19.3 antibody potently binds Ang2 with an equilibrium dissociation constant of 86 pmol/L, leading to inhibition of Tie2 receptor phosphorylation in cell-based assays. In preclinical models, 3.19.3 treatment blocked blood vessel formation in Matrigel plug assays and in human tumor xenografts. In vivo studies with 3.19.3 consistently showed broad antitumor activity as a single agent across a panel of diverse subcutaneous and orthotopic xenograft models. Combination studies of 3.19.3 with cytotoxic drugs or anti–vascular endothelial growth factor agents showed significant improvements in antitumor activity over single-agent treatments alone with no apparent evidence of increased toxicity. Initial pharmacokinetic profiling studies in mice and nonhuman primates suggested that 3.19.3 has a predicted human half-life of 10 to 14 days. These studies provide preclinical data for 3.19.3 as a potential new antiangiogenic therapy as a single agent or in combination with chemotherapy or vascular endothelial growth factor inhibitors for the treatment of cancer. Mol Cancer Ther; 9(1); 145–56


Clinical Cancer Research | 2011

Assessment of Chk1 phosphorylation as a pharmacodynamic biomarker of Chk1 inhibition

Leslie A. Parsels; Yushen Qian; Daria M. Tanska; Marisa Gross; Lili Zhao; Maria C. Hassan; Sankari Arumugarajah; Joshua D. Parsels; Linda Hylander-Gans; Diane M. Simeone; Deborah Morosini; Jeffrey L. Brown; Sonya D. Zabludoff; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

Purpose: Chk1 inhibitors, such as AZD7762, are in clinical development in combination with cytotoxic agents for the treatment of solid tumors, including pancreatic cancers. To maximize the likelihood of their clinical success, it is essential to optimize drug scheduling as well as pharmacodynamic biomarkers in preclinical models. Experimental Design: We tested multiple schedules of administration of gemcitabine and AZD7762 on the survival of pancreatic cancer cells. Potential pharmacodynamic biomarkers including pChk1, pChk2, pHistone H3, and caspase-3 were evaluated in vitro, followed by assessment of promising candidate biomarkers in vivo. We then went on to determine the contributions of PP2A and DNA damage to the mechanism(s) of induction of the identified biomarker, pS345 Chk1. Results: AZD7762 given during and after or after gemcitabine administration produced maximum chemosensitization. In vivo, AZD7762 significantly inhibited the growth of pancreatic tumor xenografts in response to gemcitabine. Of the biomarkers assessed, pS345 Chk1 was most consistently increased in response to gemcitabine and AZD7762 in tumors and normal tissues (hair follicles). pS345 Chk1 induction in response to gemcitabine and AZD7762 occurred in the presence of PP2A inhibition and in association with elevated γH2AX, suggesting that DNA damage is an underlying mechanism. Conclusions: AZD7762 sensitizes pancreatic cancer cells and tumors to gemcitabine in association with induction of pS345 Chk1. Together these data support the clinical investigation of AZD7762 with gemcitabine in pancreatic cancer under a dosing schedule in which gemcitabine is administered concurrent with or before AZD7762 and in conjunction with skin biopsies to measure pS345 Chk1. Clin Cancer Res; 17(11); 3706–15. ©2011 AACR.


Cell Cycle | 2011

Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1

Sean M. Vance; Erqi Liu; Lili Zhao; Joshua D. Parsels; Leslie A. Parsels; Jeffrey L. Brown; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 ‘deficient-like’ phenotype in p53 mutant tumor cells, while sparing normal tissue.


Molecular Cancer Research | 2012

Inhibition of the Hedgehog Pathway Targets the Tumor-Associated Stroma in Pancreatic Cancer

Rosa F. Hwang; Todd Moore; Maureen Hattersley; Meghan Scarpitti; Bin Yang; Erik Devereaux; Thiruvengadam Arumugam; Baoan Ji; Craig D. Logsdon; Jeffrey L. Brown; Robert Godin

Purpose: The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Experimental Design: Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. Results: HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Conclusion: Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment. Mol Cancer Res; 10(9); 1147–57. ©2012 AACR.


Molecular Cancer Therapeutics | 2009

Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway

Kenneth S. Thress; Terry MacIntyre; Haiyun Wang; Dave Whitston; Zhong Ying Liu; Ethan Hoffmann; Tao Wang; Jeffrey L. Brown; Kevin R. Webster; Charles A. Omer; Peter E. Zage; Lizhi Zeng; Patrick A. Zweidler-McKay

Tropomyosin-related kinases (TrkA, TrkB, and TrkC) are receptor tyrosine kinases that, along with their ligands, the neurotrophins, are involved in neuronal cell growth, development, and survival. The Trk-neurotrophin pathway may also play a role in tumorigenesis through oncogenic fusions, mutations, and autocrine signaling, prompting the development of novel Trk inhibitors as agents for cancer therapy. This report describes the identification of AZ-23, a novel, potent, and selective Trk kinase inhibitor. In vitro studies with AZ-23 showed improved selectivity over previous compounds and inhibition of Trk kinase activity in cells at low nanomolar concentrations. AZ-23 showed in vivo TrkA kinase inhibition and efficacy in mice following oral administration in a TrkA-driven allograft model and significant tumor growth inhibition in a Trk-expressing xenograft model of neuroblastoma. AZ-23 represents a potent and selective Trk kinase inhibitor from a novel series with the potential for use as a treatment for cancer. [Mol Cancer Ther 2009;8(7):1818–27]


The Lancet | 2015

Synthetic lethality in chronic lymphocytic leukaemia with DNA damage response defects by targeting the ATR pathway.

Marwan Kwok; Nicholas Davies; Angelo Agathanggelou; Edward Smith; Eva Petermann; Eliot Yates; Jeffrey L. Brown; Alan Lau; Tatjana Stankovic

BACKGROUND DNA damage response (DDR) defects, particularly TP53 and biallelic ataxia telangiectasia mutated (ATM) aberrations, are associated with genomic instability, clonal evolution, and chemoresistance in chronic lymphocytic leukaemia (CLL). Therapies capable of providing long-term disease control in CLL patients with DDR defects are lacking. Using AZD6738, a novel ATR inhibitor, we investigated ATR pathway inhibition as a synthetically lethal strategy for targeting CLL cells with these defects. METHODS The effect of AZD6738 was assessed by western blotting and immunofluorescence of key DDR proteins. Cytotoxicity was assessed by CellTiter-Gloluminescence assay (Promega, Madison, WI, USA) and by propidium iodide exclusion. Primary CLL cells with biallelic TP53 or ATM inactivation were xenotransplanted into NOD/Shi-scid/IL-2Rγ mice. After treatment with AZD6738 or vehicle, tumour load was measured by flow cytometric analysis of infiltrated spleens, and subclonal composition by fluorescence in-situ hybridisation for 17p(TP53) or 11q(ATM) deletion. FINDINGS AZD6738 provided potent and specific inhibition of ATR signalling with compensatory activation of ATM/p53 pathway in cycling CLL cells in the presence of genotoxic stress. In p53 or ATM defective cells, AZD6738 treatment resulted in replication fork stalls and accumulation of unrepaired DNA damage, as evidenced by γH2AX and 53BP1 foci formation, which was carried through into mitosis, resulting in cell death by mitotic catastrophe. AZD6738 displayed selective cytotoxicity towards ATM or p53 deficient CLL cells, and was highly synergistic in combination with cytotoxic chemotherapy. This finding was confirmed in primary xenograft models of DDR-defective CLL, where treatment with AZD6738 resulted in decreased tumour load and selective reduction of CLL subclones with ATM or TP53 alterations. INTERPRETATION We have provided mechanistic insight and demonstrated in-vitro and in-vivo efficacy of a novel therapeutic approach that specifically targets p53-null or ATM-null CLL cells. Such an approach can potentially help to avert clonal evolution, a major cause of therapeutic resistance and disease relapse. FUNDING Leukaemia & Lymphoma Research.


Cancer | 2011

The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan

Peter E. Zage; Timothy C. Graham; Lizhi Zeng; Wendy Fang; Christine Pien; Ken Thress; Charles A. Omer; Jeffrey L. Brown; Patrick A. Zweidler Mckay

TrkB expression is associated with poor prognosis for patients with neuroblastoma. AZ623 is a novel potent and selective inhibitor of the Trk family of tyrosine kinases. The authors hypothesized that AZ623 would inhibit TrkB‐mediated signaling in neuroblastoma tumor cells and would be synergistic when combined with chemotherapy.


Cancer Biology & Therapy | 2010

Theraputic targeting of Trk supresses tumor proliferation and enhances cisplatin activity in HNSCC

Turker Yilmaz; Tilahun Jiffar; Gabriel O. De La Garza; Heather Lin; Zvonimir Milas; Yoko Takahashi; Ehab Y. Hanna; Terry MacIntyre; Jeffrey L. Brown; Jeffrey N. Myers; Michael E. Kupferman

Head and neck squamous cell carcinoma (HNSCC) is a biologically aggressive disease that has been modestly impacted by improvements in therapeutic strategies. Several lines of evidence support the role of TrkB for invasion and metastasis in various solid tumor models, and we have shown an important function of this receptor in HNSCC tumor biology. Therapeutic modulation of TrkB function has been supported in the literature by the development of small molecule inhibitors (SMI) with minimal success. To assess the validity of targeting TrkB in HNSCC, we tested a novel agent, AZ64, and show significant dose and time-dependent inhibition of cellular proliferation in cell lines. Genetic studies revealed the specificity of this compound for the TrkB receptor, as exposure of cells that had genetic suppression of TrkB did not demonstrate abrogated oncogenic signaling. We next assessed the impact of AZ64 as a chemotherapy-sensitizer, and identified an enhancement of cisplatin-mediated anti-proliferation across all cell lines. We then demonstrated that AZ64 can overcome chemotherapy resistance in a novel model of cisplatin resistance in HNSCC. Modulation of the pro-oncogenic STAT3 and Src pathways was identified, suggesting molecular mechanisms of action for AZ64. In this study, we demonstrate the feasibility of targeting TrkB, and suggest a novel approach for the treatment of some chemotherapy-resistant HNSCC.


Clinical Cancer Research | 2017

Elacestrant (RAD1901), a selective estrogen receptor degrader (SERD), has anti-tumor activity in multiple ER+ breast cancer patient-derived xenograft models

Teeru Bihani; Hitisha K. Patel; Heike Arlt; Nianjun Tao; Hai Jiang; Jeffrey L. Brown; Dinesh M. Purandare; Gary Hattersley; Fiona Garner

Purpose: Estrogen receptor–positive (ER+) breast cancers are typically treated with endocrine agents, and dependence on the ER pathway is often retained even after multiple rounds of antiestrogen therapy. Selective estrogen receptor degraders (SERD) are being developed as a strategy to more effectively target ER and exploit ER dependence in these cancers, which includes inhibiting both wild-type and mutant forms of ER. The purpose of this study was to evaluate the efficacy of a novel orally bioavailable SERD, elacestrant (RAD1901), in preclinical models of ER+ breast cancer. Experimental Design: Elacestrant was evaluated as a single agent and in combination with palbociclib or everolimus in multiple ER+ breast cancer models, including several patient-derived xenograft models. Results: Elacestrant induces the degradation of ER, inhibits ER-mediated signaling and growth of ER+ breast cancer cell lines in vitro and in vivo, and significantly inhibits tumor growth of multiple PDX models. Furthermore, we demonstrate that elacestrant in combination with palbociclib or everolimus can lead to greater efficacy in certain contexts. Finally, elacestrant exhibits significant antitumor activity both as a single agent and in combination with palbociclib in two patient-derived breast cancer xenograft models harboring ESR1 mutations. Conclusions: These data underscore the potential clinical utility of elacestrant as a single agent and as a combination therapy, for both early- and late-stage ER+ disease. Clin Cancer Res; 23(16); 4793–804. ©2017 AACR.

Collaboration


Dive into the Jeffrey L. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona Garner

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Sarah Pien

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge