Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey L. Thorne is active.

Publication


Featured researches published by Jeffrey L. Thorne.


Systematic Biology | 2002

Divergence Time and Evolutionary Rate Estimation with Multilocus Data

Jeffrey L. Thorne; Hirohisa Kishino

Bayesian methods for estimating evolutionary divergence times are extended to multigene data sets, and a technique is described for detecting correlated changes in evolutionary rates among genes. Simulations are employed to explore the effect of multigene data on divergence time estimation, and the methodology is illustrated with a previously published data set representing diverse plant taxa. The fact that evolutionary rates and times are confounded when sequence data are compared is emphasized and the importance of fossil information for disentangling rates and times is stressed.


Journal of Molecular Evolution | 1991

An evolutionary model for maximum likelihood alignment of DNA sequences

Jeffrey L. Thorne; Hirohisa Kishino; Joseph Felsenstein

SummaryMost algorithms for the alignment of biological sequences are not derived from an evolutionary model. Consequently, these alignment algorithms lack a strong statistical basis. A maximum likelihood method for the alignment of two DNA sequences is presented. This method is based upon a statistical model of DNA sequence evolution for which we have obtained explicit transition probabilities. The evolutionary model can also be used as the basis of procedures that estimate the evolutionary parameters relevant to a pair of unaligned DNA sequences. A parameter-estimation approach which takes into account all possible alignments between two sequences is introduced; the danger of estimating evolutionary parameters from a single alignment is discussed.


American Journal of Botany | 2004

Molecular evidence on plant divergence times.

Michael J. Sanderson; Jeffrey L. Thorne; Niklas Wikström; Kåre Bremer

Estimation of divergence times from sequence data has become increasingly feasible in recent years. Conflicts between fossil evidence and molecular dates have sparked the development of new methods for inferring divergence times, further encouraging these efforts. In this paper, available methods for estimating divergence times are reviewed, especially those geared toward handling the widespread variation in rates of molecular evolution observed among lineages. The assumptions, strengths, and weaknesses of local clock, Bayesian, and rate smoothing methods are described. The rapidly growing literature applying these methods to key divergence times in plant evolutionary history is also reviewed. These include the crown group ages of green plants, land plants, seed plants, angiosperms, and major subclades of angiosperms. Finally, attempts to infer divergence times are described in the context of two very different temporal settings: recent adaptive radiations and much more ancient biogeographic patterns.


Journal of Molecular Evolution | 1992

Inching toward reality: An improved likelihood model of sequence evolution

Jeffrey L. Thorne; Hirohisa Kishino; Joseph Felsenstein

SummaryOur previous evolutionary model is generalized to permit approximate treatment of multiple-base insertions and deletions as well as regional heterogeneity of substitution rates. Parameter estimation and alignment procedures that incorporate these generalizations are developed. Simulations are used to assess the accuracy of the parameter estimation procedure and an example of an inferred alignment is included.


Genome Biology | 2003

Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach

Elizabeth H. Scholl; Jeffrey L. Thorne; James P. McCarter; David McK. Bird

BackgroundPublished accounts of horizontally acquired genes in plant-parasitic nematodes have not been the result of a specific search for gene transfer per se, but rather have emerged from characterization of individual genes. We present a method for a high-throughput genome screen for horizontally acquired genes, illustrated using expressed sequence tag (EST) data from three species of root-knot nematode, Meloidogyne species.ResultsOur approach identified the previously postulated horizontally transferred genes and revealed six new candidates. Screening was partially dependent on sequence quality, with more candidates identified from clustered sequences than from raw EST data. Computational and experimental methods verified the horizontal gene transfer candidates as bona fide nematode genes. Phylogenetic analysis implicated rhizobial ancestors as donors of horizontally acquired genes in Meloidogyne.ConclusionsHigh-throughput genomic screening is an effective way to identify horizontal gene transfer candidates. Transferred genes that have undergone amelioration of nucleotide composition and codon bias have been identified using this approach. Analysis of these horizontally transferred gene candidates suggests a link between horizontally transferred genes in Meloidogyne and parasitism.


Protein Science | 2012

The interface of protein structure, protein biophysics, and molecular evolution

David A. Liberles; Sarah A. Teichmann; Ivet Bahar; Ugo Bastolla; Jesse D. Bloom; Erich Bornberg-Bauer; Lucy J. Colwell; A. P. Jason de Koning; Nikolay V. Dokholyan; Julian J. Echave; Arne Elofsson; Dietlind L. Gerloff; Richard A. Goldstein; Johan A. Grahnen; Mark T. Holder; Clemens Lakner; Nicholas Lartillot; Simon C. Lovell; Gavin J. P. Naylor; Tina Perica; David D. Pollock; Tal Pupko; Lynne Regan; Andrew J. Roger; Nimrod D. Rubinstein; Eugene I. Shakhnovich; Kimmen Sjölander; Shamil R. Sunyaev; Ashley I. Teufel; Jeffrey L. Thorne

Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state‐of‐the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high‐throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.


Current Opinion in Genetics & Development | 2000

Models of protein sequence evolution and their applications.

Jeffrey L. Thorne

Homologous sequences are correlated due to their common ancestry. Probabilistic models of sequence evolution are employed routinely to properly account for these phylogenetic correlations. These increasingly realistic models provide a basis for studying evolution and for exploiting it to better understand protein structure and function. Notable recent advances have been made in the treatment of insertion and deletion events, the estimation of amino-acid replacement rates, and the detection of positive selection.


Archive | 2005

Estimation of Divergence Times from Molecular Sequence Data

Jeffrey L. Thorne; Hirohisa Kishino

“A comparison of the structures of homologous proteins (i.e., proteins with the same kinds of biological activity or function) from different species is important, therefore, for two reasons. First, the similarities found give a measure of the minimum structure for biological function. Second, the differences found may give us important clues to the rate at which successful mutations have occurred throughout evolutionary time and may also serve as an additional basis for establishing phylogenetic relationships.”


Bioinformatics | 2002

A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times

Tae-Kun Seo; Jeffrey L. Thorne; Masami Hasegawa; Hirohisa Kishino

MOTIVATION The high pace of viral sequence change means that variation in the times at which sequences are sampled can have a profound effect both on the ability to detect trends over time in evolutionary rates and on the power to reject the Molecular Clock Hypothesis (MCH). Trends in viral evolutionary rates are of particular interest because their detection may allow connections to be established between a patients treatment or condition and the process of evolution. Variation in sequence isolation times also impacts the uncertainty associated with estimates of divergence times and evolutionary rates. Variation in isolation times can be intentionally adjusted to increase the power of hypothesis tests and to reduce the uncertainty of evolutionary parameter estimates, but this fact has received little previous attention. RESULTS We provide approximations for the power to reject the MCH when the alternative is that rates change in a linear fashion over time and when the alternative is that rates differ randomly among branches. In addition, we approximate the standard deviation of estimated evolutionary rates and divergence times. We illustrate how these approximations can be exploited to determine which viral sample to sequence when samples representing different dates are available.


Molecular Phylogenetics and Evolution | 2008

Rates of nucleotide substitution in Cornaceae (Cornales)-Pattern of variation and underlying causal factors.

Qiu-Yun Xiang; Jeffrey L. Thorne; Tae-Kun Seo; Wenheng Zhang; David T. Thomas; Robert E. Ricklefs

Identifying causes of genetic divergence is a central goal in evolutionary biology. Although rates of nucleotide substitution vary among taxa and among genes, the causes of this variation tend to be poorly understood. In the present study, we examined the rate and pattern of molecular evolution for five DNA regions over a phylogeny of Cornus, the single genus of Cornaceae. To identify evolutionary mechanisms underlying the molecular variation, we employed Bayesian methods to estimate divergence times and to infer how absolute rates of synonymous and nonsynonymous substitutions and their ratios change over time. We found that the rates vary among genes, lineages, and through time, and differences in mutation rates, selection type and intensity, and possibly genetic drift all contributed to the variation of substitution rates observed among the major lineages of Cornus. We applied independent contrast analysis to explore whether speciation rates are linked to rates of molecular evolution. The results showed no relationships for individual genes, but suggested a possible localized link between species richness and rate of nonsynonymous nucleotide substitution for the combined cpDNA regions. Furthermore, we detected a positive correlation between rates of molecular evolution and morphological change in Cornus. This was particularly pronounced in the dwarf dogwood lineage, in which genome-wide acceleration in both molecular and morphological evolution has likely occurred.

Collaboration


Dive into the Jeffrey L. Thorne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Goldman

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Sang Chul Choi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

David Jones

University College London

View shared research outputs
Top Co-Authors

Avatar

David D. Pollock

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaye Yu

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge