Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey M. Casavant is active.

Publication


Featured researches published by Jeffrey M. Casavant.


Journal of Medicinal Chemistry | 2010

Discovery of CP-690,550: A Potent and Selective Janus Kinase (JAK) Inhibitor for the Treatment of Autoimmune Diseases and Organ Transplant Rejection

Mark Edward Flanagan; Todd Andrew Blumenkopf; Matthew Frank Brown; Jeffrey M. Casavant; Chang Shang-Poa; Jonathan L. Doty; Eileen A. Elliott; Michael B. Fisher; Michael Hines; Craig R. Kent; Elizabeth M. Kudlacz; Brett M. Lillie; Kelly S. Magnuson; Sandra P. McCurdy; Michael John Munchhof; Bret D. Perry; Perry S. Sawyer; Timothy J. Strelevitz; Chakrapani Subramanyam; Jianmin Sun; David A. Whipple; Paul S. Changelian

There is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation. The Pfizer compound library was screened against the catalytic domain of JAK3 resulting in the identification of a pyrrolopyrimidine-based series of inhibitors represented by CP-352,664 (2a). Synthetic analogues of 2a were screened against the JAK enzymes and evaluated in an IL-2 induced T cell blast proliferation assay. Select compounds were evaluated in rodent efficacy models of allograft rejection and destructive inflammatory arthritis. Optimization within this chemical series led to identification of CP-690,550 1, a potential first-in-class JAK inhibitor for treatment of autoimmune diseases and organ transplant rejection.


ACS Medicinal Chemistry Letters | 2011

Preparation, Gram-Negative Antibacterial Activity, and Hydrolytic Stability of Novel Siderophore-Conjugated Monocarbam Diols

Mark Edward Flanagan; Steven J. Brickner; Manjinder S. Lall; Jeffrey M. Casavant; Laura Deschenes; Steven M. Finegan; David M. George; Karl Granskog; Joel R. Hardink; Michael D. Huband; Thuy Hoang; Lucinda Lamb; Andrea Marra; Mark J. Mitton-Fry; John P. Mueller; Lisa Mullins; Mark C. Noe; John P. O'Donnell; David Pattavina; Joseph Penzien; Brandon P. Schuff; Jianmin Sun; David A. Whipple; Jennifer A. Young; Thomas D. Gootz

A novel series of monocarbam compounds exhibiting promising antibacterial activity against multidrug resistant Gram-negative microorganisms is reported, along with the synthesis of one such molecule MC-1 (1). Also reported are structure-activity relationships associated with the in vitro and in vivo efficacy of 1 and related analogues in addition to the hydrolytic stability of such compounds and possible implications thereof.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV.

Mark J. Mitton-Fry; Steven J. Brickner; Judith C. Hamel; Lori Brennan; Jeffrey M. Casavant; Michael Chen; Tao Chen; Xiaoyuan Ding; James P. Driscoll; Joel R. Hardink; Thuy Hoang; Erbing Hua; Michael D. Huband; Meghan Maloney; Anthony Marfat; Sandra P. McCurdy; Dale McLeod; Michael Plotkin; Usa Reilly; Shaughn Robinson; John Schafer; Richard M. Shepard; James F. Smith; Gregory G. Stone; Chakrapani Subramanyam; Kwansik Yoon; Wei Yuan; Richard P. Zaniewski; Christopher Zook

A structurally novel set of inhibitors of bacterial type II topoisomerases with potent in vitro and in vivo antibacterial activity was developed. Dual-targeting ability, hERG inhibition, and pharmacokinetic properties were also assessed.


Journal of Medicinal Chemistry | 2013

Pyridone-Conjugated Monobactam Antibiotics with Gram-Negative Activity

Matthew Frank Brown; Mark J. Mitton-Fry; Rose Barham; Jeffrey M. Casavant; Brian S. Gerstenberger; Seungil Han; Joel R. Hardink; Thomas M. Harris; Thuy Hoang; Michael D. Huband; Manjinder S. Lall; M. Megan Lemmon; Chao Li; Jian Lin; Sandra P. McCurdy; Eric McElroy; Craig J. McPherson; Eric S. Marr; John P. Mueller; Lisa Mullins; Antonia A. Nikitenko; Mark C. Noe; Joseph Penzien; Mark Stephen Plummer; Brandon P. Schuff; Veerabahu Shanmugasundaram; Jeremy T. Starr; Jianmin Sun; Andrew P. Tomaras; Jennifer A. Young

Herein we describe the structure-aided design and synthesis of a series of pyridone-conjugated monobactam analogues with in vitro antibacterial activity against clinically relevant Gram-negative species including Pseudomonas aeruginosa , Klebsiella pneumoniae , and Escherichia coli . Rat pharmacokinetic studies with compound 17 demonstrate low clearance and low plasma protein binding. In addition, evidence is provided for a number of analogues suggesting that the siderophore receptors PiuA and PirA play a role in drug uptake in P. aeruginosa strain PAO1.


ACS Medicinal Chemistry Letters | 2016

Optimization of Tubulysin Antibody–Drug Conjugates: A Case Study in Addressing ADC Metabolism

L. Nathan Tumey; Carolyn A. Leverett; Beth Cooper Vetelino; Fengping Li; Brian Rago; Xiaogang Han; Frank Loganzo; Sylvia Musto; Guoyun Bai; Sai Chetan K. Sukuru; Edmund I. Graziani; Sujiet Puthenveetil; Jeffrey M. Casavant; Anokha S. Ratnayake; Kimberly Marquette; Sarah Hudson; Venkata Ramana Doppalapudi; Joseph Stock; Lioudmila Tchistiakova; Andrew J. Bessire; Tracey Clark; Judy Lucas; Christine Hosselet; Christopher J. O’Donnell; Chakrapani Subramanyam

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody–drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays. Second, site-specific conjugation was employed in order to design ADCs with reduced metabolic liabilities. Using the later approach, we were able to identify a conjugate at the 334C position of the heavy chain that resulted in an ADC with considerably reduced metabolism and improved efficacy. The examples discussed herein provide one of the clearest demonstrations to-date that site of conjugation can play a critical role in addressing metabolic and PK liabilities of an ADC. Moreover, a clear correlation was identified between the hydrophobicity of an ADC and its susceptibility to metabolic enzymes. Importantly, this study demonstrates that traditional medicinal chemistry strategies can be effectively applied to ADC programs.


Bioorganic & Medicinal Chemistry Letters | 2012

Novel monobactams utilizing a siderophore uptake mechanism for the treatment of gram-negative infections

Mark J. Mitton-Fry; Matthew Frank Brown; Jeffrey M. Casavant; Steven M. Finegan; Mark Edward Flanagan; Hongying Gao; David M. George; Brian S. Gerstenberger; Seungil Han; Joel R. Hardink; Thomas M. Harris; Thuy Hoang; Michael D. Huband; Rebecca Irvine; Manjinder S. Lall; M. Megan Lemmon; Chao Li; Jian Lin; Sandra P. McCurdy; John P. Mueller; Lisa Mullins; Mark Niosi; Mark C. Noe; David Pattavina; Joseph Penzien; Mark Stephen Plummer; Hud Risley; Brandon P. Schuff; Veerabahu Shanmugasundaram; Jeremy T. Starr

Novel siderophore-linked monobactams with in vitro and in vivo anti-microbial activity against MDR Gram-negative pathogens are described.


Bioorganic & Medicinal Chemistry Letters | 2010

Structure-activity relationships and hepatic safety risks of thiazole agonists of the thrombopoietin receptor.

Amy S. Antipas; Laura Cook Blumberg; Matthew Frank Brown; Jeffrey M. Casavant; Jonathan L. Doty; James P. Driscoll; Thomas M. Harris; Christopher S. Jones; Sandra P. McCurdy; Eric McElroy; Mark J. Mitton-Fry; Michael John Munchhof; David A. Reim; Lawrence A. Reiter; Sharon L. Ripp; Andrei Shavnya; Marc I. Smeets; Kristen A. Trevena

5-F substitution of an aminothiazole moiety within a series of thrombopoietin receptor agonists leads to potent agents with an improved hepatic safety profile in rodent toxicology studies.


Aaps Journal | 2017

Site Selection: a Case Study in the Identification of Optimal Cysteine Engineered Antibody Drug Conjugates

L. Nathan Tumey; Fengping Li; Brian Rago; Xiaogang Han; Frank Loganzo; Sylvia Musto; Edmund I. Graziani; Sujiet Puthenveetil; Jeffrey M. Casavant; Kimberly Marquette; Tracey Clark; Jack Bikker; Eric M. Bennett; Frank Barletta; Nicole Piche-Nicholas; Amy Tam; Christopher J. O’Donnell; Hans Gerber; Lioudmila Tchistiakova

As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs. However, we demonstrate that the rate of cathepsin-mediated linker cleavage is heavily dependent upon site and is closely correlated with ADC hydrophobicity, thus confirming other recent reports of this phenomenon. Interestingly, conjugates with high rates of cathepsin-mediated linker cleavage did not exhibit decreased plasma stability. In fact, the major source of plasma instability was shown to be retro-Michael mediated deconjugation. This process is known to be impeded by succinimide hydrolysis, and thus, we undertook a series of mutational experiments demonstrating that basic residues located nearby the site of conjugation can be a significant driver of succinimide ring opening. Finally, we show that total antibody PK exposure in rat was loosely correlated with ADC hydrophobicity. It is our hope that these observations will help the ADC community to build “design rules” that will enable more efficient prosecution of next-generation ADC discovery programs.


Bioorganic & Medicinal Chemistry Letters | 2009

The identification of orally bioavailable thrombopoietin agonists.

Michael John Munchhof; Amy S. Antipas; Laura Cook Blumberg; Matthew Frank Brown; Jeffrey M. Casavant; Jonathan L. Doty; James P. Driscoll; Thomas M. Harris; Lilli A. Wolf-Gouveia; Christopher S. Jones; Qifang Li; Robert Gerald Linde; Paul D. Lira; Anthony Marfat; Eric McElroy; Mark J. Mitton-Fry; Sandra P. McCurdy; Lawrence A. Reiter; Sharon L. Ripp; Andrei Shavnya; Lisa Marie Thomasco; Kristen A. Trevena

Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety. The resulting compounds possessed favorable in vivo pharmacokinetic properties, including good bioavailability.


Bioorganic & Medicinal Chemistry Letters | 2017

Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV ☆

Mark J. Mitton-Fry; Steven J. Brickner; Judith C. Hamel; Rose Barham; Lori Brennan; Jeffrey M. Casavant; Xiaoyuan Ding; Steven M. Finegan; Joel R. Hardink; Thuy Hoang; Michael D. Huband; Meghan Maloney; Anthony Marfat; Sandra P. McCurdy; Dale McLeod; Chakrapani Subramanyam; Michael Plotkin; Usa Reilly; John Schafer; Gregory G. Stone; Daniel P. Uccello; Todd Wisialowski; Kwansik Yoon; Richard P. Zaniewski; Christopher Zook

Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90=0.125μg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9μM and a favorable profile in the anesthetized guinea pig model.

Collaboration


Dive into the Jeffrey M. Casavant's collaboration.

Researchain Logo
Decentralizing Knowledge