Jeffrey M. Ellenbogen
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey M. Ellenbogen.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jeffrey M. Ellenbogen; Peter T. Hu; Jessica D. Payne; Debra Titone; Matthew P. Walker
Relational memory, the flexible ability to generalize across existing stores of information, is a fundamental property of human cognition. Little is known, however, about how and when this inferential knowledge emerges. Here, we test the hypothesis that human relational memory develops during offline time periods. Fifty-six participants initially learned five “premise pairs” (A>B, B>C, C>D, D>E, and E>F). Unknown to subjects, the pairs contained an embedded hierarchy (A>B>C>D>E>F). Following an offline delay of either 20 min, 12 hr (wake or sleep), or 24 hr, knowledge of the hierarchy was tested by examining inferential judgments for novel “inference pairs” (B>D, C>E, and B>E). Despite all groups achieving near-identical premise pair retention after the offline delay (all groups, >85%; the building blocks of the hierarchy), a striking dissociation was evident in the ability to make relational inference judgments: the 20-min group showed no evidence of inferential ability (52%), whereas the 12- and 24-hr groups displayed highly significant relational memory developments (inference ability of both groups, >75%; P < 0.001). Moreover, if the 12-hr period contained sleep, an additional boost to relational memory was seen for the most distant inferential judgment (the B>E pair; sleep = 93%, wake = 69%, P = 0.03). Interestingly, despite this increase in performance, the sleep benefit was not associated with an increase in subjective confidence for these judgments. Together, these findings demonstrate that human relational memory develops during offline time delays. Furthermore, sleep appears to preferentially facilitate this process by enhancing hierarchical memory binding, thereby allowing superior performance for the more distant inferential judgments, a benefit that may operate below the level of conscious awareness.
Current Biology | 2006
Jeffrey M. Ellenbogen; Justin C. Hulbert; Robert Stickgold; David F. Dinges; Sharon L. Thompson-Schill
Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.
Current Opinion in Neurobiology | 2006
Jeffrey M. Ellenbogen; Jessica D. Payne; Robert Stickgold
Those inclined to relish in scientific controversy will not be disappointed by the literature on the effects of sleep on memory. Opinions abound. Yet refinements in the experimental study of these complex processes of sleep and memory are bringing this fascinating relationship into sharper focus. A longstanding position contends that sleep passively protects memories by temporarily sheltering them from interference, thus providing precious little benefit for memory. But recent evidence is unmasking a more substantial and long-lasting benefit of sleep for declarative memories. Although the precise causal mechanisms within sleep that result in memory consolidation remain elusive, recent evidence leads us to conclude that unique neurobiological processes within sleep actively enhance declarative memories.
Sleep | 2013
Miguel Marino; Yi Li; Michael Rueschman; John W. Winkelman; Jeffrey M. Ellenbogen; Jo M. Solet; Hilary Dulin; Lisa F. Berkman; Orfeu M. Buxton
OBJECTIVES We validated actigraphy for detecting sleep and wakefulness versus polysomnography (PSG). DESIGN Actigraphy and polysomnography were simultaneously collected during sleep laboratory admissions. All studies involved 8.5 h time in bed, except for sleep restriction studies. Epochs (30-sec; n = 232,849) were characterized for sensitivity (actigraphy = sleep when PSG = sleep), specificity (actigraphy = wake when PSG = wake), and accuracy (total proportion correct); the amount of wakefulness after sleep onset (WASO) was also assessed. A generalized estimating equation (GEE) model included age, gender, insomnia diagnosis, and daytime/nighttime sleep timing factors. SETTING Controlled sleep laboratory conditions. PARTICIPANTS Young and older adults, healthy or chronic primary insomniac (PI) patients, and daytime sleep of 23 night-workers (n = 77, age 35.0 ± 12.5, 30F, mean nights = 3.2). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Overall, sensitivity (0.965) and accuracy (0.863) were high, whereas specificity (0.329) was low; each was only slightly modified by gender, insomnia, day/night sleep timing (magnitude of change < 0.04). Increasing age slightly reduced specificity. Mean WASO/night was 49.1 min by PSG compared to 36.8 min/night by actigraphy (β = 0.81; CI = 0.42, 1.21), unbiased when WASO < 30 min/night, and overestimated when WASO > 30 min/night. CONCLUSIONS This validation quantifies strengths and weaknesses of actigraphy as a tool measuring sleep in clinical and population studies. Overall, the participant-specific accuracy is relatively high, and for most participants, above 80%. We validate this finding across multiple nights and a variety of adults across much of the young to midlife years, in both men and women, in those with and without insomnia, and in 77 participants. We conclude that actigraphy is overall a useful and valid means for estimating total sleep time and wakefulness after sleep onset in field and workplace studies, with some limitations in specificity.
Current Biology | 2010
Thien Thanh Dang-Vu; Scott M. McKinney; Orfeu M. Buxton; Jo M. Solet; Jeffrey M. Ellenbogen
Quality sleep is an essential part of health and well-being. Yet fractured sleep is disturbingly prevalent in our society, partly due to insults from a variety of noises [1]. Common experience suggests that this fragility of sleep is highly variable between people, but it is unclear what mechanisms drive these differences. Here we show that it is possible to predict an individuals ability to maintain sleep in the face of sound using spontaneous brain rhythms from electroencephalography (EEG). The sleep spindle is a thalamocortical rhythm manifested on the EEG as a brief 11-15 Hz oscillation and is thought to be capable of modulating the influence of external stimuli [2]. Its rate of occurrence, while variable across people, is stable across nights [3]. We found that individuals who generated more sleep spindles during a quiet night of sleep went on to exhibit higher tolerance for noise during a subsequent, noisy night of sleep. This result shows that the sleeping brains spontaneous activity heralds individual resilience to disruptive stimuli. Our finding sets the stage for future studies that attempt to augment spindle production to enhance sleep continuity when confronted with noise.
Annals of Internal Medicine | 2012
Orfeu M. Buxton; Jeffrey M. Ellenbogen; Wei Wang; Andy Carballeira; Shawn P. O'Connor; Dan Cooper; Ankit J. Gordhandas; Scott M. McKinney; Jo M. Solet
Background Sleep plays a critical role in maintaining health and well-being; however, patients who are hospitalized are frequently exposed to noise that can disrupt sleep. Efforts to attenuate hospital noise have been limited by incomplete information on the interaction between sounds and sleep physiology. Objective To determine profiles of acoustic disruption of sleep by examining the cortical (encephalographic) arousal responses during sleep to typical hospital noises by sound level and type and sleep stage. Design 3-day polysomnographic study. Setting Sound-attenuated sleep laboratory. Participants Volunteer sample of 12 healthy participants. Intervention Baseline (sham) night followed by 2 intervention nights with controlled presentation of 14 sounds that are common in hospitals (for example, voice, intravenous alarm, phone, ice machine, outside traffic, and helicopter). The sounds were administered at calibrated, increasing decibel levels (40 to 70 dBA [decibels, adjusted for the range of normal hearing]) during specific sleep stages. Measurements Encephalographic arousals, by using established criteria, during rapid eye movement (REM) sleep and non-REM (NREM) sleep stages 2 and 3. Results Sound presentations yielded arousal response curves that varied because of sound level and type and sleep stage. Electronic sounds were more arousing than other sounds, including human voices, and there were large differences in responses by sound type. As expected, sounds in NREM stage 3 were less likely to cause arousals than sounds in NREM stage 2; unexpectedly, the probability of arousal to sounds presented in REM sleep varied less by sound type than when presented in NREM sleep and caused a greater and more sustained elevation of instantaneous heart rate. Limitations The study included only 12 participants. Results for these healthy persons may underestimate the effects of noise on sleep in patients who are hospitalized. Conclusion Sounds during sleep influence both cortical brain activity and cardiovascular function. This study systematically quantifies the disruptive capacity of a range of hospital sounds on sleep, providing evidence that is essential to improving the acoustic environments of new and existing health care facilities to enable the highest quality of care. Primary funding source Academy of Architecture for Health, Facilities Guidelines Institute, and The Center for Health Design.
PLOS ONE | 2009
Jeffrey M. Ellenbogen; Justin C. Hulbert; Ying Jiang; Robert Stickgold
Memories evolve. After learning something new, the brain initiates a complex set of post-learning processing that facilitates recall (i.e., consolidation). Evidence points to sleep as one of the determinants of that change. But whenever a behavioral study of episodic memory shows a benefit of sleep, critics assert that sleep only leads to a temporary shelter from the damaging effects of interference that would otherwise accrue during wakefulness. To evaluate the potentially active role of sleep for verbal memory, we compared memory recall after sleep, with and without interference before testing. We demonstrated that recall performance for verbal memory was greater after sleep than after wakefulness. And when using interference testing, that difference was even more pronounced. By introducing interference after sleep, this study confirms an experimental paradigm that demonstrates the active role of sleep in consolidating memory, and unmasks the large magnitude of that benefit.
PLOS ONE | 2012
Jessica D. Payne; Matthew A. Tucker; Jeffrey M. Ellenbogen; Erin J. Wamsley; Matthew P. Walker; Daniel L. Schacter; Robert Stickgold
Numerous studies have examined sleeps influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9am or 9pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness.
Journal of Sleep Research | 2013
Matt T. Bianchi; Kathryn L. Williams; Scott M. McKinney; Jeffrey M. Ellenbogen
The diagnosis and management of insomnia relies primarily on clinical history. However, patient self‐report of sleep–wake times may not agree with objective measurements. We hypothesized that those with shallow or fragmented sleep would under‐report sleep quantity, and that this might account for some of the mismatch. We compared objective and subjective sleep–wake times for 277 patients who underwent diagnostic polysomnography. The group included those with insomnia symptoms (n = 92), obstructive sleep apnea (n = 66) or both (n = 119). Mismatch of wake duration was context dependent: all three groups overestimated sleep latency but underestimated wakefulness after sleep onset. The insomnia group underestimated total sleep time by a median of 81 min. However, contrary to our hypothesis, measures of fragmentation (N1, arousal index, sleep efficiency, etc.) did not correlate with the subjective sleep duration estimates. To unmask a potential relationship between sleep architecture and subjective duration, we tested three hypotheses: N1 is perceived as wake; sleep bouts under 10 min are perceived as wake; or N1 and N2 are perceived in a weighted fashion. None of these hypotheses exposed a match between subjective and objective sleep duration. We show only modest performance of a Naïve Bayes Classifier algorithm for predicting mismatch using clinical and polysomnographic variables. Subjective–objective mismatch is common in patients reporting insomnia symptoms. We conclude that mismatch was not attributable to commonly measured polysomnographic measures of fragmentation. Further insight is needed into the complex relationships between subjective perception of sleep and conventional, objective measurements.
PLOS ONE | 2011
Scott M. McKinney; Thien Thanh Dang-Vu; Orfeu M. Buxton; Jo M. Solet; Jeffrey M. Ellenbogen
The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep.