Jeffrey M. Long
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey M. Long.
Journal of Molecular Neuroscience | 2000
Jaewon Lee; Wenzhen Duan; Jeffrey M. Long; Donald K. Ingram; Mark P. Mattson
The adult brain contains neural stem cells that are capable of proliferating, differentiating into neurons or glia, and then either surviving or dying. This process of neural-cell production (neurogenesis) in the dentate gyrus of the hippocampus is responsive to brain injury, and both mental and physical activity. We now report that neurogenesis in the dentate gyrus can also be modified by diet. Previous studies have shown that dietary restriction (DR) can suppress agerelated deficits in learning and memory, and can increase resistance of neurons to degeneration in experimental models of neurodegenerative disorders. We found that maintenance of adult rats on a DR regimen results in a significant increase in the numbers of newly produced neural cells in the dentate gyrus of the hippocampus, as determined by stereologic analysis of cells labeled with the DNA precursor analog bromodeoxyuridine. The increase in neurogenesis in rats maintained on DR appears to result from decreased death of newly produced cells, rather than from increased cell proliferation. We further show that the expression of brain-derived neurotrophic factor, a trophic factor recently associated with neurogenesis, is increased in hippocampal cells of rats maintained on DR. Our data are the first evidence that diet can affect the process of neurogenesis, as well as the first evidence that diet can affect neurotrophic factor production. These findings provide insight into the mechanisms whereby diet impacts on brain plasticity, aging and neurodegenerative disorders.
The Journal of Neuroscience | 2010
Shaday Michan; Ying Li; Maggie Meng Hsiu Chou; Edoardo Parrella; Huanying Ge; Jeffrey M. Long; Joanne S. Allard; Kaitlyn N. Lewis; Marshall Miller; Wei Xu; Ronald F. Mervis; Jing Chen; Karen I. Guerin; Lois E. H. Smith; Michael W. McBurney; David A. Sinclair; Michel Baudry; Rafael de Cabo; Valter D. Longo
Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian nicotinamide-adenine dinucleotide-dependent deacetylase SIRT1 impacts different processes potentially involved in the maintenance of brain integrity, such as chromatin remodeling, DNA repair, cell survival, and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms, we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning, and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knock-out (KO) mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but displayed a decrease in dendritic branching, branch length, and complexity of neuronal dendritic arbors. Also, a decrease in extracellular signal-regulated kinase 1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism, and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory, and synaptic plasticity in mice.
Neurobiology of Aging | 1998
Michael E. Calhoun; Daniel Kurth; Amie L. Phinney; Jeffrey M. Long; John Hengemihle; Peter R. Mouton; Donald K. Ingram; Mathias Jucker
A loss of hippocampal neurons and synapses had been considered a hallmark of normal aging and, furthermore, to be a substrate of age-related learning and memory deficits. Recent stereological studies in humans have shown that only a relatively minor neuron loss occurs with aging and that this loss is restricted to specific brain regions, including hippocampal subregions. Here, we investigate these age-related changes in C57BL/6J mice, one of the most commonly used laboratory mouse strains. Twenty-five mice (groups at 2, 14, and 28-31 months of age) were assessed for Morris water-maze performance, and modern stereological techniques were used to estimate total neuron and synaptophysin-positive bouton number in hippocampal subregions at the light microscopic level. Results revealed that performance in the water maze was largely maintained with aging. No age-related decline was observed in number of dentate gyrus granule cells or CA1 pyramidal cells. In addition, no age-related change in number of synaptophysin-positive boutons was observed in the molecular layer of the dentate gyrus or CA1 region of hippocampus. We observed a significant correlation between dentate gyrus synaptophysin-positive bouton number and water-maze performance. These results demonstrate that C57BL/6J mice do not exhibit major age-related deficits in spatial learning or hippocampal structure, providing a baseline for further study of mouse brain aging.
Brain Research | 2002
Peter R. Mouton; Jeffrey M. Long; De-Liang Lei; Victor Howard; Mathias Jucker; Michael E. Calhoun; Donald K. Ingram
The morphological changes that occur during normal brain aging are not well understood. This study used modern stereology to assess the effects of age and gender on total numbers of astrocytes and microglia in the hippocampal formation in C57Bl/6NNIA (B6) mice. Astrocytes and microglia were visualized using immunocytochemistry for glial fibrillary acidic protein (GFAP) and complement receptor 3 (Mac-1), respectively, and numbers of each cell type in dentate gyrus (DG) and CA1 regions were estimated using the optical fractionator method. The results reveal significantly greater ( approximately 20%) numbers of microglia and astrocytes in aged females compared to young female B6 mice. We also report that on average female B6 mice have 25-40% more astrocytes and microglia in DG and CA1 regions than age-matched male C57Bl/6J mice. Since astrocytes and microglia are thought to be targets of gonadal hormones, the effects of sex hormones and reproductive aging may be responsible for these findings.
Neurobiology of Aging | 1998
Jeffrey M. Long; Audrey N. Kalehua; Nancy J. Muth; Michael E. Calhoun; Mathias Jucker; John Hengemihle; Donald K. Ingram; Peter R. Mouton
Recent evidence suggests neuroglia-mediated inflammatory mechanisms may stimulate neurodegenerative processes in mammalian brain during aging. To test the hypothesis that the number of microglia and astrocytes increase in the hippocampus during normal aging, unbiased stereological techniques were used to estimate total cell number in hippocampal subregions (CA1, dentate gyrus and hilus) of male C57BL/6J mice of different ages: 4-5 months, 13-14 months and 27-28 months. Immunocytochemical visualization for microglia and astrocytes were via Mac-1 and GFAP antibody, respectively. Estimates of total microglia and astrocyte number were assessed using the optical fractionator. No statistically significant age differences were found in the numbers of microglia or astrocytes in the hippocampal regions sampled. These findings suggest that age-related increases in the total numbers of hippocampal microglia and astrocytes is not causal for observed age-related increases in cytokine response.
Journal of Neuroscience Methods | 1998
Jeffrey M. Long; Audrey N. Kalehua; Nancy J. Muth; John Hengemihle; Mathias Jucker; Michael E. Calhoun; Donald K. Ingram; Peter R. Mouton
Microglia are brain cells of considerable interest because of their role in CNS inflammatory responses and strong association with neuritic plaques in Alzheimers disease (AD). In the present study, immunocytochemistry was combined with unbiased stereology to estimate the mean total number of microglia in dentate gyrus and CA1 regions of the mouse hippocampus. Systematic-uniform-random (SUR) sections were cut through the hippocampal formation of male C57BL/6J mice (n = 7, 4-5 months) and immunostained with Mac-1, an antibody to the complement subunit 3 receptor (CR3). The total number of Mac-1 immunopositive cells was determined using the optical fractionator method. The mean total number of microglia in the mouse dentate gyrus was estimated to be 20,300 (CV = 0.21) with a mean coefficient of error (CE) = 0.09. The mean total number of microglia in the mouse CA1 was estimated to be 43,200 (CV = 0.24) with a CE = 0.11. Comparison of total number estimates, derived from fraction- or volume-based methods, supported stereological theory regarding the equivalence of the two techniques. The time required to determine total microglia number in both hippocampal sub-regions was approximately 6 h per mouse from stained sections. The combination of immunocytochemistry and stereology provides a reliable means to assess microglia number that can easily be adopted for studies of transgenic and lesion-based models of aging and neurodegenerative diseases.
Behavioral Neuroscience | 1996
Jeffrey M. Long; Raymond P. Kesner
To test for the contribution of the parietal cortex and hippocampus to memory for allocentric spatial cues, the authors trained rats on a go/no-go task that required the rat to remember the distance between two visual cues. Total hippocampal lesions impaired working-memory representation for allocentric distance, whereas parietal cortex lesions resulted in only a transient impairment. In a second experiment, neither hippocampal nor parietal cortex lesions impaired allocentric distance discrimination. A third experiment showed that both the dorsal and ventral areas of the hippocampal formation must be destroyed to impair working memory for allocentric distance information. There appears to be a dissociation between the hippocampus and parietal cortex in mediating memory for allocentric distance information.
Behavioral Neuroscience | 1998
Jeffrey M. Long; Raymond P. Kesner
To assess the working memory system for egocentric distance and place information, delayed matching-to-sample (DMTS) go/no-go tasks were run for each rat. To assess the reference memory system, and to serve as a control for nonmemory deficits, successive discrimination go/no-go tasks were then conducted using the same rats. Rats with hippocampal, but not parietal cortex, lesions were impaired relative to controls in the working memory (DMTS) task for both egocentric distance and place information, although the deficit observed in the working memory task for egocentric distance information by rats with hippocampal lesions was mild. Neither hippocampal nor parietal cortex lesioned rats were impaired relative to controls in the reference memory (successive discrimination) task for either cue. The hippocampus appears to be involved in working memory for egocentric distance and in spatial location information, whereas the parietal cortex is not.
Journal of Molecular Neuroscience | 2001
Yongquan Luo; Jeffrey M. Long; Edward L. Spangler; Dan L. Longo; Donald K. Ingram; Nan-ping Weng
Long-term memory formation requires de novo RNA and protein synthesis. To assess gene-expression changes associated with learning and memory processes, we used cDNA microarray to analyze hippocampal gene expression in male Fischer-344 rats following training in a multiunit T-maze. Here, we report the identification of 28 clones (18 known genes and 10 ESTs) for which expression increased after the maze learning. Some of the known genes appear to be involved in Ca2+ signaling, Ras activation, kinase cascades, and extracellular matrix (ECM) function, which may regulate neural transmission, synaptic plasticity, and neurogenesis. The geneexpression profile presented here provides the groundwork for future, more focused research to elucidate the contribution of these genes in learning and memory processes.
Neurobiology of Aging | 1993
Donald K. Ingram; Harvey L. Wiener; Mark E. Chachichi; Jeffrey M. Long; John Hengemihle; Madi Gupta
Male C57BL/6J mice were provided I-deprenyl (at 0, 0.5 mg/kg or 1.0 mg/kg per day) in their drinking water beginning at 18 months of age. A battery of motor tests, including open-field, tightrope, rotorod, inclined screen, runwheel, and rotodrum tests, was administered before treatment and then 6 months later at 24 months of age. A subsample of mice was retested again at 27 months of age. An untreated group of 9-month-old mice served as young controls. Deprenyl treatment reduced striatal MAO-B activity by up to 60% after 6 months on treatment but had no significant effects on striatal catecholamine levels. No significant effects of deprenyl treatment were observed on body weight, fluid intake, or survival of the mice. Chronic deprenyl treatment also did not affect motor performance in any test, except rotodrum performance at 27 months of age, which was significantly better in the 1.0 mg/kg group treated group compared to controls. No age or deprenyl effects were observed with respect to cell counts in the substantia nigra. However, nigral cells containing lipofuscin increased with age, but this neurohistochemical parameter was also unaffected by deprenyl treatment.