Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey M. Moore is active.

Publication


Featured researches published by Jeffrey M. Moore.


Nature | 1998

Evidence for a subsurface ocean on Europa

Michael H. Carr; Michael Belton; Clark R. Chapman; Merton E. Davies; P. E. Geissler; Richard Greenberg; Alfred S. McEwen; Bruce R. Tufts; Ronald Greeley; Robert J. Sullivan; James W. Head; Robert T. Pappalardo; Kenneth P. Klaasen; Torrence V. Johnson; James M. Kaufman; David A. Senske; Jeffrey M. Moore; G. Neukum; Gerald Schubert; Joseph A. Burns; Peter C. Thomas; Joseph Veverka

Ground-based spectroscopy of Jupiters moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europas surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europas thin outer ice shell might be separated from the moons silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile ‘icebergs’. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.


Journal of Geophysical Research | 1999

Does Europa have a subsurface ocean? Evaluation of the geological evidence

Robert T. Pappalardo; M. J. S. Belton; H. H. Breneman; Michael H. Carr; Clark R. Chapman; G. C. Collins; Tilmann Denk; Sarah A. Fagents; P. E. Geissler; Bernd Giese; Ronald Greeley; Richard Greenberg; James W. Head; Paul Helfenstein; Gregory V. Hoppa; S. D. Kadel; Kenneth P. Klaasen; James Klemaszewski; K. P. Magee; Alfred S. McEwen; Jeffrey M. Moore; W. B. Moore; G. Neukum; Cynthia B. Phillips; Louise M. Prockter; Gerald Schubert; David A. Senske; R. Sullivan; B. R. Tufts; Elizabeth P. Turtle

It has been proposed that Jupiters satellite Europa currently possesses a global subsurface ocean of liquid water. Galileo gravity data verify that the satellite is differentiated into an outer H2O layer about 100 km thick but cannot determine the current physical state of this layer (liquid or solid). Here we summarize the geological evidence regarding an extant subsurface ocean, concentrating on Galileo imaging data. We describe and assess nine pertinent lines of geological evidence: impact morphologies, lenticulae, cryovolcanic features, pull-apart bands, chaos, ridges, surface frosts, topography, and global tectonics. An internal ocean would be a simple and comprehensive explanation for a broad range of observations; however, we cannot rule out the possibility that all of the surface morphologies could be due to processes in warm, soft ice with only localized or partial melting. Two different models of impact flux imply very different surface ages for Europa; the model favored here indicates an average age of ∼50 Myr. Searches for evidence of current geological activity on Europa, such as plumes or surface changes, have yielded negative results to date. The current existence of a global subsurface ocean, while attractive in explaining the observations, remains inconclusive. Future geophysical measurements are essential to determine conclusively whether or not there is a liquid water ocean within Europa today.


Journal of Geophysical Research | 2005

An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development

Rossman P. Irwin; Alan D. Howard; Robert A. Craddock; Jeffrey M. Moore

[1] To explain the much higher denudation rates and valley network development on early Mars (>∼3.6 Gyr ago), most investigators have invoked either steady state warm/wet (Earthlike) or cold/dry (modern Mars) end-member paleoclimates. Here we discuss evidence that highland gradation was prolonged, but generally slow and possibly ephemeral during the Noachian Period, and that the immature valley networks entrenched during a brief terminal epoch of more erosive fluvial activity in the late Noachian to early Hesperian. Observational support for this interpretation includes (1) late-stage breaching of some enclosed basins that had previously been extensively modified, but only by internal erosion and deposition; (2) deposition of pristine deltas and fans during a late stage of contributing valley entrenchment; (3) a brief, erosive response to base level decline (which was imparted as fretted terrain developed by a suite of processes unrelated to surface runoff) in fluvial valleys that crosscut the highland-lowland boundary scarp; and (4) width/contributing area relationships of interior channels within valley networks, which record significant late-stage runoff production with no evidence of recovery to lower-flow conditions. This erosion appears to have ended abruptly, as depositional landforms generally were not entrenched with declining base level in crater lakes. A possible planetwide synchronicity and common cause to the late-stage fluvial activity are possible but remain uncertain. This increased activity of valley networks is offered as a possible explanation for diverse features of highland drainage basins, which were previously cited to support competing warm, wet and cold, dry paleoclimate scenarios.


Science | 2016

The geology of Pluto and Charon through the eyes of New Horizons

Jeffrey M. Moore; William B. McKinnon; John R. Spencer; Alan D. Howard; Paul M. Schenk; Ross A. Beyer; Francis Nimmo; Kelsi N. Singer; Orkan M. Umurhan; Oliver L. White; S. Alan Stern; Kimberly Ennico; Catherine B. Olkin; Harold A. Weaver; Leslie A. Young; Richard P. Binzel; Marc William Buie; Bonnie J. Buratti; Andrew F. Cheng; Dale P. Cruikshank; William M. Grundy; Ivan R. Linscott; Harold J. Reitsema; D. C. Reuter; Mark R. Showalter; Veronica J. Bray; Carrie L. Chavez; Carly Howett; Tod R. Lauer; Carey Michael Lisse

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto and Charon display a complex geology, including evidence for tectonics and cryovolcanoes. NASA’s New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto’s encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.


Journal of Geophysical Research | 2000

Geologic mapping of Europa

Ronald Greeley; Patricio Hernan Figueredo; David A. Williams; Frank C. Chuang; James Klemaszewski; S. D. Kadel; Louise M. Prockter; Robert T. Pappalardo; James W. Head; G. C. Collins; Nicole Angelique Spaun; Robert J. Sullivan; Jeffrey M. Moore; David A. Senske; B. Randall Tufts; Torrence V. Johnson; Michael Belton; Kenneth L. Tanaka

Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C 1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa.


Space Science Reviews | 2008

Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission

D. C. Reuter; S. Alan Stern; John Scherrer; Donald E. Jennings; James W. Baer; J. Hanley; Lisa Hardaway; Allen W. Lunsford; Stuart McMuldroch; Jeffrey M. Moore; Catherine B. Olkin; Robert Parizek; Harold Reitsma; Derek S. Sabatke; John R. Spencer; John Stone; Henry Blair Throop; Jeffrey Van Cleve; Gerald Weigle; Leslie A. Young

The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA’s first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with SWIR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg) power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.


Journal of Geophysical Research | 1997

The Phanerozoic impact cratering rate: Evidence from the farside of the Moon

Alfred S. McEwen; Jeffrey M. Moore; Eugene M. Shoemaker

The relatively recent (<1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moons farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than ∼3.2 b.y. old is ∼3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is ∼1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800–850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was ∼35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters (≤120 m.y.) and from present-day astronomical observations, and (3) the Proterozoic rate suggested by the crater record of Australia. The hypothesis most consistent with several key observations is that the cratering rate has increased by ∼2x during the past ∼300 m.y‥


Nature | 2001

Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas

Paul M. Schenk; William B. McKinnon; David Gwynn; Jeffrey M. Moore

Large regions of the jovian moon Ganymede have been resurfaced, but the means has been unclear. Suggestions have ranged from volcanic eruptions of liquid water or solid ice to tectonic deformation, but definitive high-resolution morphological evidence has been lacking. Here we report digital elevation models of parts of the surface of Ganymede, derived from stereo pairs combining data from the Voyager and Galileo spacecraft, which reveal bright, smooth terrains that lie at roughly constant elevations 100 to 1,000 metres below the surrounding rougher terrains. These topographic data, together with new images that show fine-scale embayment and burial of older features, indicate that the smooth terrains were formed by flooding of shallow structural troughs by low-viscosity water-ice lavas. The oldest and most deformed areas (the ‘reticulate’ terrains) in general have the highest relative elevations, whereas units of the most common resurfaced type—the grooved terrain—lie at elevations between those of the smooth and reticulate terrains. Bright terrain, which accounts for some two-thirds of the surface, probably results from a continuum of processes, including crustal rifting, shallow flooding and groove formation. Volcanism plays an integral role in these processes, and is consistent with partial melting of Ganymedes interior.


Icarus | 1992

The influence of thermal inertia on temperatures and frost stability on Triton

John R. Spencer; Jeffrey M. Moore

Abstract Seasonal subsurface heat conduction can have a large influence on Tritons N2 frost distribution. Increasing surface thermal inertia reduces the thickness and extent of seasonal N2 frosts. If the thermal inertia of the nonvolatile substrate is greater than about 30% of the value for nonporous H2O or CO2, or if nonporous H2O or CO2 is overlaid by a porous regolith of low thermal inertia but less than a few meters thick, the northernmost latitudes visible to Voyager should have been frost-free at the time of the encounter, possibly accounting for their relatively low albedo. If the substrate in the northern hemisphere has sufficiently low albedo and/or emissivity and also has a thermal inertia comparable to that of nonporous H2O or CO2, there may be no seasonal or permanent N2 deposits in the northern hemisphere at all. Because this model, like previous ones, predicts a monotonic recession of permanent N2 deposits toward the poles and very limited seasonal N2 frost in the southern hemisphere at Voyager time, and because of new spectroscopic evidence for nonvolatile CO2 on Tritons bright southern hemisphere, we consider it possible that much of the bright material on Tritons southern hemisphere is not N2. Bright nonvolatiles in the southern hemisphere may allow seasonal N2 frosts to form there during the southern summer, possibly helping to explain Tritons spectroscopic changes during the past decade. All the models considered here predict 10-fold or greater seasonal variations in atmospheric pressure, with pressure currently increasing in high-thermal-inertia models and decreasing in models with low thermal inertia.


Geological Society of America Bulletin | 2013

Fluvial features on Titan: Insights from morphology and modeling

Devon M. Burr; J. Taylor Perron; Michael P. Lamb; Rossman P. Irwin; G. C. Collins; Alan D. Howard; Leonard S. Sklar; Jeffrey M. Moore; Máté Ádámkovics; Victor R. Baker; Sarah A. Drummond; Benjamin A. Black

Fluvial features on Titan have been identified in synthetic aperture radar (SAR) data taken during spacecraft flybys by the Cassini Titan Radar Mapper (RADAR) and in Descent Imager/Spectral Radiometer (DISR) images taken during descent of the Huygens probe to the surface. Interpretations using terrestrial analogs and process mechanics extend our perspective on fluvial geomorphology to another world and offer insight into their formative processes. At the landscape scale, the varied morphologies of Titan’s fluvial networks imply a variety of mechanical controls, including structural influence, on channelized flows. At the reach scale, the various morphologies of individual fluvial features, implying a broad range of fluvial processes, suggest that (paleo-)flows did not occupy the entire observed width of the features. DISR images provide a spatially limited view of uplands dissected by valley networks, also likely formed by overland flows, which are not visible in lower-resolution SAR data. This high-resolution snapshot suggests that some fluvial features observed in SAR data may be river valleys rather than channels, and that uplands elsewhere on Titan may also have fine-scale fluvial dissection that is not resolved in SAR data. Radar-bright terrain with crenulated bright and dark bands is hypothesized here to be a signature of fine-scale fluvial dissection. Fluvial deposition is inferred to occur in braided channels, in (paleo)lake basins, and on SAR-dark plains, and DISR images at the surface indicate the presence of fluvial sediment. Flow sufficient to move sediment is inferred from observations and modeling of atmospheric processes, which support the inference from surface morphology of precipitation-fed fluvial processes. With material properties appropriate for Titan, terrestrial hydraulic equations are applicable to flow on Titan for fully turbulent flow and rough boundaries. For low-Reynolds-number flow over smooth boundaries, however, knowledge of fluid kinematic viscosity is necessary. Sediment movement and bed form development should occur at lower bed shear stress on Titan than on Earth. Scaling bedrock erosion, however, is hampered by uncertainties regarding Titan material properties. Overall, observations of Titan point to a world pervasively influenced by fluvial processes, for which appropriate terrestrial analogs and formulations may provide insight.

Collaboration


Dive into the Jeffrey M. Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Schenk

Lunar and Planetary Institute

View shared research outputs
Top Co-Authors

Avatar

John R. Spencer

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Leslie A. Young

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

William B. McKinnon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Harold A. Weaver

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Alan Stern

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ronald Greeley

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Catherine B. Olkin

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert T. Pappalardo

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge