Jeffrey M. Perlman
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey M. Perlman.
Circulation | 2010
Jeffrey M. Perlman; Jonathan Wyllie; John Kattwinkel; Dianne L. Atkins; Leon Chameides; Jay P. Goldsmith; Ruth Guinsburg; Mary Fran Hazinski; Colin J. Morley; Sam Richmond; Wendy M. Simon; Nalini Singhal; Edgardo Szyld; Masanori Tamura; Sithembiso Velaphi; Khalid Aziz; David W. Boyle; Steven Byrne; Peter G Davis; William A. Engle; Marilyn B. Escobedo; Maria Fernanda Branco de Almeida; David Field; Judith Finn; Louis P. Halamek; Jane E. McGowan; Douglas McMillan; Lindsay Mildenhall; Rintaro Mori; Susan Niermeyer
2010;126;e1319-e1344; originally published online Oct 18, 2010; Pediatrics COLLABORATORS CHAPTER Sithembiso Velaphi and on behalf of the NEONATAL RESUSCITATION Sam Richmond, Wendy M. Simon, Nalini Singhal, Edgardo Szyld, Masanori Tamura, Chameides, Jay P. Goldsmith, Ruth Guinsburg, Mary Fran Hazinski, Colin Morley, Jeffrey M. Perlman, Jonathan Wyllie, John Kattwinkel, Dianne L. Atkins, Leon Recommendations Resuscitation and Emergency Cardiovascular Care Science With Treatment Neonatal Resuscitation: 2010 International Consensus on Cardiopulmonary http://www.pediatrics.org/cgi/content/full/126/5/e1319 located on the World Wide Web at: The online version of this article, along with updated information and services, is rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275. Grove Village, Illinois, 60007. Copyright
Circulation | 2010
John M. Field; Mary Fran Hazinski; Michael R. Sayre; Leon Chameides; Stephen M. Schexnayder; Robin Hemphill; Ricardo A. Samson; John Kattwinkel; Robert A. Berg; Farhan Bhanji; Diana M. Cave; Edward C. Jauch; Peter J. Kudenchuk; Robert W. Neumar; Mary Ann Peberdy; Jeffrey M. Perlman; Elizabeth Sinz; Andrew H. Travers; Marc D. Berg; John E. Billi; Brian Eigel; Robert W. Hickey; Monica E. Kleinman; Mark S. Link; Laurie J. Morrison; Robert E. O'Connor; Michael Shuster; Clifton W. Callaway; Brett Cucchiara; Jeffrey D. Ferguson
The goal of therapy for bradycardia or tachycardia is to rapidly identify and treat patients who are hemodynamically unstable or symptomatic due to the arrhythmia. Drugs or, when appropriate, pacing may be used to control unstable or symptomatic bradycardia. Cardioversion or drugs or both may be used to control unstable or symptomatic tachycardia. ACLS providers should closely monitor stable patients pending expert consultation and should be prepared to aggressively treat those with evidence of decompensation.
Circulation | 2010
Mary Fran Hazinski; Jerry P. Nolan; John E. Billi; Bernd W. Böttiger; Leo Bossaert; Allan R. de Caen; Charles D. Deakin; Saul Drajer; Brian Eigel; Robert W. Hickey; Ian Jacobs; Monica E. Kleinman; Walter Kloeck; Rudolph W. Koster; Swee Han Lim; Mary E. Mancini; William H. Montgomery; Peter Morley; Laurie J. Morrison; Vinay Nadkarni; Robert E. O'Connor; Kazuo Okada; Jeffrey M. Perlman; Michael R. Sayre; Michael Shuster; Jasmeet Soar; Kjetil Sunde; Andrew H. Travers; Jonathan Wyllie; David Zideman
The International Liaison Committee on Resuscitation (ILCOR) was founded on November 22, 1992, and currently includes representatives from the American Heart Association (AHA), the European Resuscitation Council (ERC), the Heart and Stroke Foundation of Canada (HSFC), the Australian and New Zealand Committee on Resuscitation (ANZCOR), Resuscitation Council of Southern Africa (RCSA), the InterAmerican Heart Foundation (IAHF), and the Resuscitation Council of Asia (RCA). Its mission is to identify and review international science and knowledge relevant to cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) and when there is consensus to offer treatment recommendations. Emergency cardiovascular care includes all responses necessary to treat sudden life-threatening events affecting the cardiovascular and respiratory systems, with a particular focus on sudden cardiac arrest. In 1999, the AHA hosted the first ILCOR conference to evaluate resuscitation science and develop common resuscitation guidelines. The conference recommendations were published in the International Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care .1 Since 2000, researchers from the ILCOR member councils have evaluated resuscitation science in 5-year cycles. The conclusions and recommendations of the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations were published at the end of 2005.2,3 The most recent International Consensus Conference was held in Dallas in February 2010, and this publication contains the consensus science statements and treatment recommendations developed with input from the invited participants. The goal of every resuscitation organization and resuscitation expert is to prevent premature cardiovascular death. When cardiac arrest or life-threatening emergencies occur, prompt and skillful response can make the difference between life and death and between intact survival and debilitation. This document summarizes the 2010 evidence evaluation of published science about the recognition and response to sudden life-threatening events, particularly sudden cardiac arrest and periarrest events in …
The New England Journal of Medicine | 1983
Jeffrey M. Perlman; Joseph B. McMenamin; Joseph J. Volpe
We studied whether changes in cerebral blood-flow velocity occur during the respiratory-distress syndrome and whether, if present, they are related to the subsequent occurrence of intraventricular hemorrhage. Fifty infants weighing less than 1500 g at birth who required mechanical ventilation for the respiratory-distress syndrome were studied from the first hours of life. Blood-flow velocity in the anterior cerebral artery was measured at the anterior fontanel by means of the Doppler technique. At 12 hours of age, the infants had blood-flow velocity patterns that were either stable or fluctuating and that reflected the patterns of simultaneously recorded blood pressure. Intraventricular hemorrhage subsequently developed in 21 of 23 infants with the fluctuating pattern (in most of them, within the next 24 hours), but in only 7 of 27 infants with the stable pattern. Preliminary data suggest that the cerebral hemodynamic fluctuations are related to the respiratory disease and particularly to the mechanics of respiration. We conclude that the fluctuating pattern of cerebral blood-flow velocity in infants with the respiratory-distress syndrome indicates an extreme risk of the development of intraventricular hemorrhage and may represent a major and potentially preventable etiologic factor.
Circulation | 2010
John Kattwinkel; Jeffrey M. Perlman; Khalid Aziz; Christopher E. Colby; John J. Gallagher; Mary Fran Hazinski; Louis P. Halamek; Praveen Kumar; Jane E. McGowan; Barbara Nightengale; Mildred M. Ramirez; Wendy M. Simon; Gary M. Weiner; Myra H. Wyckoff; Jeanette Zaichkin
The following guidelines are an interpretation of the evidence presented in the 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations 1 ). They apply primarily to newly born infants undergoing transition from intrauterine to extrauterine life, but the recommendations are also applicable to neonates who have completed perinatal transition and require resuscitation during the first few weeks to months following birth. Practitioners who resuscitate infants at birth or at any time during the initial hospital admission should consider following these guidelines. For the purposes of these guidelines, the terms newborn and neonate are intended to apply to any infant during the initial hospitalization. The term newly born is intended to apply specifically to an infant at the time of birth. Approximately 10% of newborns require some assistance to begin breathing at birth. Less than 1% require extensive resuscitative measures. 2,3 Although the vast majority of newly born infants do not require intervention to make the transition from intrauterine to extrauterine life, because of the large total number of births, a sizable number will require some degree of resuscitation. Those newly born infants who do not require resuscitation can generally be identified by a rapid assessment of the following 3 characteristics: ● Term gestation? ● Crying or breathing? ● Good muscle tone? If the answer to all 3 of these questions is “yes,” the baby does not need resuscitation and should not be separated from the mother. The baby should be dried, placed skin-to-skin with the mother, and covered with dry linen to maintain temperature. Observation of breathing, activity, and color should be ongoing. If the answer to any of these assessment questions is “no,” the infant should receive one or more of the following 4 categories of action in sequence:
Pediatrics | 2010
John Kattwinkel; Jeffrey M. Perlman; Khalid Aziz; Christopher E. Colby; Karen D. Fairchild; John J. Gallagher; Mary Fran Hazinski; Louis P. Halamek; Praveen Kumar; George A. Little; Jane E. McGowan; Barbara Nightengale; Mildred M. Ramirez; Steven A. Ringer; Wendy M. Simon; Gary M. Weiner; Myra H. Wyckoff; Jeanette Zaichkin
The following guidelines are an interpretation of the evidence presented in the 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations 1). They apply primarily to newly born infants undergoing transition from intrauterine to extrauterine life, but the recommendations are also applicable to neonates who have completed perinatal transition and require resuscitation during the first few weeks to months following birth. Practitioners who resuscitate infants at birth or at any time during the initial hospital admission should consider following these guidelines. For the purposes of these guidelines, the terms newborn and neonate are intended to apply to any infant during the initial hospitalization. The term newly born is intended to apply specifically to an infant at the time of birth. Approximately 10% of newborns require some assistance to begin breathing at birth. Less than 1% require extensive resuscitative measures.2,3 Although the vast majority of newly born infants do not require intervention to make the transition from intrauterine to extrauterine life, because of the large total number of births, a sizable number will require some degree of resuscitation. Those newly born infants who do not require resuscitation can generally be identified by a rapid assessment of the following 3 characteristics: If the answer to all 3 of these questions is “yes,” the baby does not need resuscitation and should not be separated from the mother. The baby should be dried, placed skin-to-skin with the mother, and covered with dry linen to maintain temperature. Observation of breathing, activity, and color should be ongoing. If the answer to any of these assessment questions is “no,” the infant should receive one or more of the following 4 categories of action in …
The New England Journal of Medicine | 1985
Jeffrey M. Perlman; Steven N. Goodman; Katherine L. Kreusser; Joseph J. Volpe
In a previous study of preterm infants requiring mechanical ventilation for the respiratory distress syndrome, we demonstrated a striking association of fluctuating cerebral blood-flow velocity in the first day of life with the subsequent occurrence of intraventricular hemorrhage. Because this fluctuating pattern could be eliminated by muscle paralysis, we conducted a prospective study of preterm infants receiving mechanical ventilation for the respiratory distress syndrome in which we evaluated the effect of paralysis and this flow-velocity pattern on the incidence and severity of intraventricular hemorrhage. Twenty-four infants with the fluctuating pattern in the first hours of life were identified and randomly selected to serve as controls (10) or to be subjected to muscle paralysis (14). Intraventricular hemorrhage developed in all 10 control infants but in only 5 of the 14 infants subjected to muscle paralysis. Moreover, in 4 of the 5 paralyzed infants in whom hemorrhage developed, it did so after cessation of the paralysis. Seven of the 10 control infants had Grade III hemorrhage, the most severe variety of intraventricular hemorrhage, whereas none of the paralyzed infants had Grade III hemorrhage. We conclude that elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome markedly reduces the incidence and severity of intraventricular hemorrhage.
Circulation | 2010
John M. Field; Mary Fran Hazinski; Michael R. Sayre; Leon Chameides; Stephen M. Schexnayder; Robin Hemphill; Ricardo A. Samson; John Kattwinkel; Robert A. Berg; Farhan Bhanji; Diana M. Cave; Edward C. Jauch; Peter J. Kudenchuk; Robert W. Neumar; Mary Ann Peberdy; Jeffrey M. Perlman; Elizabeth Sinz; Andrew H. Travers; Marc D. Berg; John E. Billi; Brian Eigel; Robert W. Hickey; Monica E. Kleinman; Mark S. Link; Laurie J. Morrison; Robert E. O'Connor; Michael Shuster; Clifton W. Callaway; Brett Cucchiara; Jeffrey D. Ferguson
Mary Fran Hazinski, Co-Chair*; Jerry P. Nolan, Co-Chair*; John E. Billi; Bernd W. Böttiger; Leo Bossaert; Allan R. de Caen; Charles D. Deakin; Saul Drajer; Brian Eigel; Robert W. Hickey; Ian Jacobs; Monica E. Kleinman; Walter Kloeck; Rudolph W. Koster; Swee Han Lim; Mary E. Mancini; William H. Montgomery; Peter T. Morley; Laurie J. Morrison; Vinay M. Nadkarni; Robert E. O’Connor; Kazuo Okada; Jeffrey M. Perlman; Michael R. Sayre; Michael Shuster; Jasmeet Soar; Kjetil Sunde; Andrew H. Travers; Jonathan Wyllie; David Zideman
Pediatrics | 2010
Jeffrey M. Perlman; Jonathan Wyllie; John Kattwinkel; Dianne L. Atkins; Jay P. Goldsmith; Ruth Guinsburg; Mary Fran Hazinski; Colin J. Morley; Sam Richmond; Wendy M. Simon; Nalini Singhal; Edgardo Szyld; Masanori Tamura; Sithembiso Velaphi
Note From the Writing Group: Throughout this article, the reader will notice combinations of superscripted letters and numbers (eg, “Peripartum SuctioningNRP-011A, NRP-012A”). These callouts are hyperlinked to evidence-basedworksheets, whichwere used in the development of this article. An appendix of worksheets, applicable to this article, is located at the end of the text. The worksheets are available in PDF format and are open access.
Circulation | 2015
Mary Fran Hazinski; Jerry P. Nolan; Richard Aickin; Farhan Bhanji; John E. Billi; Clifton W. Callaway; Maaret Castrén; Allan R. de Caen; Jose Maria E. Ferrer; Judith Finn; Lana M. Gent; Russell E. Griffin; Sandra Iverson; Eddy Lang; Swee Han Lim; Ian Maconochie; William H. Montgomery; Peter Morley; Vinay Nadkarni; Robert W. Neumar; Nikolaos I. Nikolaou; Gavin D. Perkins; Jeffrey M. Perlman; Eunice M. Singletary; Jasmeet Soar; Andrew H. Travers; Michelle Welsford; Jonathan Wyllie; David Zideman
The International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support (ALS) Task Force performed detailed systematic reviews based on the recommendations of the Institute of Medicine of the National Academies1 and using the methodological approach proposed by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Working Group.2 Questions to be addressed (using the PICO [population, intervention, comparator, outcome] format)3 were prioritized by ALS Task Force members (by voting). Prioritization criteria included awareness of significant new data and new controversies or questions about practice. Questions about topics no longer relevant to contemporary practice or where little new research has occurred were given lower priority. The ALS Task Force prioritized 42 PICO questions for review. With the assistance of information specialists, a detailed search for relevant articles was performed in each of 3 online databases (PubMed, Embase, and the Cochrane Library). By using detailed inclusion and exclusion criteria, articles were screened for further evaluation. The reviewers for each question created a reconciled risk of bias assessment for each of the included studies, using state-of-the-art tools: Cochrane for randomized controlled trials (RCTs),4 Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 for studies of diagnostic accuracy,5 and GRADE for observational studies that inform both therapy and prognosis questions.6 GRADE evidence profile tables7 were then created to facilitate an evaluation of the evidence in support of each of the critical and important outcomes. The quality of the evidence (or confidence in the estimate of the effect) was categorized as high, moderate, low, or very low,8 based on the study methodologies and the 5 core GRADE domains of risk of bias, inconsistency, indirectness, imprecision, and other considerations (including publication bias).9 These evidence profile tables were then used to create a …