Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey M. Skerker is active.

Publication


Featured researches published by Jeffrey M. Skerker.


Cell | 2008

Rewiring the Specificity of Two-Component Signal Transduction Systems

Jeffrey M. Skerker; Barrett S. Perchuk; Albert Siryaporn; Emma A. Lubin; Orr Ashenberg; Mark Goulian; Michael T. Laub

Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.


PLOS Biology | 2005

Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

Jeffrey M. Skerker; Melanie S. Prasol; Barrett S. Perchuk; Emanuele G. Biondi; Michael T. Laub

Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein–protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK–CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this system-wide selectivity insulates two-component pathways from one another, preventing unwanted cross-talk.


Nature | 2006

Regulation of the bacterial cell cycle by an integrated genetic circuit

Emanuele G. Biondi; Sarah J. Reisinger; Jeffrey M. Skerker; Muhammad Arif; Barrett S. Perchuk; Kathleen R. Ryan; Michael T. Laub

How bacteria regulate cell cycle progression at a molecular level is a fundamental but poorly understood problem. In Caulobacter crescentus, two-component signal transduction proteins are crucial for cell cycle regulation, but the connectivity of regulators involved has remained elusive and key factors are unidentified. Here we identify ChpT, an essential histidine phosphotransferase that controls the activity of CtrA, the master cell cycle regulator. We show that the essential histidine kinase CckA initiates two phosphorelays, each requiring ChpT, which lead to the phosphorylation and stabilization of CtrA. Downregulation of CckA activity therefore results in the dephosphorylation and degradation of CtrA, which in turn allow the initiation of DNA replication. Furthermore, we show that CtrA triggers its own destruction by promoting cell division and inducing synthesis of the essential regulator DivK, which feeds back to downregulate CckA immediately before S phase. Our results define a single integrated circuit whose components and connectivity can account for the cell cycle oscillations of CtrA in Caulobacter.


eLife | 2014

Selection of chromosomal DNA libraries using a multiplex CRISPR system

Owen W. Ryan; Jeffrey M. Skerker; Matthew J. Maurer; Xin Li; Jordan C. Tsai; Snigdha Poddar; Michael E. Lee; Will DeLoache; John E. Dueber; Adam P. Arkin; Jamie H. D. Cate

The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function. DOI: http://dx.doi.org/10.7554/eLife.03703.001


Nature Reviews Microbiology | 2004

CELL-CYCLE PROGRESSION AND THE GENERATION OF ASYMMETRY IN CAULOBACTER CRESCENTUS

Jeffrey M. Skerker; Michael T. Laub

Microorganisms make tractable model systems and Caulobacter crescentus has emerged as the main model for understanding the regulation of the bacterial cell cycle. Mechanisms that mediate the generation and maintenance of spatial asymmetry are being uncovered using this model bacterium. Now, the advent of genomic technologies together with the completion of the Caulobacter crescentus genome sequence is enabling global analyses that have revolutionized the pace of research into the genetic networks that control the bacterial life cycle.


PLOS ONE | 2013

Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae

Soo Rin Kim; Jeffrey M. Skerker; Wei Kang; Anastashia Lesmana; Na Wei; Adam P. Arkin; Yong Su Jin

Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.


PLOS Genetics | 2010

Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways.

Emily J. Capra; Barrett S. Perchuk; Emma A. Lubin; Orr Ashenberg; Jeffrey M. Skerker; Michael T. Laub

Two-component signal transduction systems enable bacteria to sense and respond to a wide range of environmental stimuli. Sensor histidine kinases transmit signals to their cognate response regulators via phosphorylation. The faithful transmission of information through two-component pathways and the avoidance of unwanted cross-talk require exquisite specificity of histidine kinase-response regulator interactions to ensure that cells mount the appropriate response to external signals. To identify putative specificity-determining residues, we have analyzed amino acid coevolution in two-component proteins and identified a set of residues that can be used to rationally rewire a model signaling pathway, EnvZ-OmpR. To explore how a relatively small set of residues can dictate partner selectivity, we combined alanine-scanning mutagenesis with an approach we call trajectory-scanning mutagenesis, in which all mutational intermediates between the specificity residues of EnvZ and another kinase, RstB, were systematically examined for phosphotransfer specificity. The same approach was used for the response regulators OmpR and RstA. Collectively, the results begin to reveal the molecular mechanism by which a small set of amino acids enables an individual kinase to discriminate amongst a large set of highly-related response regulators and vice versa. Our results also suggest that the mutational trajectories taken by two-component signaling proteins following gene or pathway duplication may be constrained and subject to differential selective pressures. Only some trajectories allow both the maintenance of phosphotransfer and the avoidance of unwanted cross-talk.


Molecular Systems Biology | 2014

Indirect and suboptimal control of gene expression is widespread in bacteria

Morgan N. Price; Adam M. Deutschbauer; Jeffrey M. Skerker; Troy Ruths; Jordan S Mar; Jennifer V. Kuehl; Wenjun Shao; Adam P. Arkin

Gene regulation in bacteria is usually described as an adaptive response to an environmental change so that genes are expressed when they are required. We instead propose that most genes are under indirect control: their expression responds to signal(s) that are not directly related to the genes’ function. Indirect control should perform poorly in artificial conditions, and we show that gene regulation is often maladaptive in the laboratory. In Shewanella oneidensis MR‐1, 24% of genes are detrimental to fitness in some conditions, and detrimental genes tend to be highly expressed instead of being repressed when not needed. In diverse bacteria, there is little correlation between when genes are important for optimal growth or fitness and when those genes are upregulated. Two common types of indirect control are constitutive expression and regulation by growth rate; these occur for genes with diverse functions and often seem to be suboptimal. Because genes that have closely related functions can have dissimilar expression patterns, regulation may be suboptimal in the wild as well as in the laboratory.


Molecular Microbiology | 2006

A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus

Emanuele G. Biondi; Jeffrey M. Skerker; Muhammad Arif; Melanie S. Prasol; Barrett S. Perchuk; Michael T. Laub

A fundamental question in developmental biology is how morphogenesis is coordinated with cell cycle progression. In Caulobacter crescentus, each cell cycle produces morphologically distinct daughter cells, a stalked cell and a flagellated swarmer cell. Construction of both the flagellum and stalk requires the alternative sigma factor RpoN (σ54). Here we report that a σ54‐dependent activator, TacA, is required for cell cycle regulated stalk biogenesis by collaborating with RpoN to activate gene expression. We have also identified the first histidine phosphotransferase in C. crescentus, ShpA, and show that it too is required for stalk biogenesis. Using a systematic biochemical technique called phosphotransfer profiling we have identified a multicomponent phosphorelay which leads from the hybrid histidine kinase ShkA to ShpA and finally to TacA. This pathway functions in vivo to phosphorylate and hence, activate TacA. Finally, whole genome microarrays were used to identify candidate members of the TacA regulon, and we show that at least one target gene, staR, regulates stalk length. This is the first example of a general method for identifying the connectivity of a phosphorelay and can be applied to any organism with two‐component signal transduction systems.


Molecular Systems Biology | 2014

Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates

Jeffrey M. Skerker; Dacia Leon; Morgan N. Price; Jordan S Mar; Daniel R. Tarjan; Adam M. Deutschbauer; Jason K. Baumohl; Stefan Bauer; Ana B. Ibáñez; Valerie D. Mitchell; Cindy H. Wu; Ping Hu; Terry C. Hazen; Adam P. Arkin

The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA‐barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4‐fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate‐derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance.

Collaboration


Dive into the Jeffrey M. Skerker's collaboration.

Top Co-Authors

Avatar

Adam P. Arkin

Sanford-Burnham Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael T. Laub

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Barrett S. Perchuk

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Deutschbauer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stefan Bauer

University of California

View shared research outputs
Top Co-Authors

Avatar

Dacia Leon

University of California

View shared research outputs
Top Co-Authors

Avatar

Morgan N. Price

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily J. Capra

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge