Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey M. Weiss is active.

Publication


Featured researches published by Jeffrey M. Weiss.


Science | 2014

Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance

Angela L. Rasmussen; Atsushi Okumura; Martin T. Ferris; Richard Green; Friederike Feldmann; Sara Kelly; Dana P. Scott; David Safronetz; Elaine Haddock; Rachel LaCasse; Matthew J. Thomas; Pavel Sova; Victoria S. Carter; Jeffrey M. Weiss; Darla R. Miller; Ginger D. Shaw; Marcus J. Korth; Mark T. Heise; Ralph S. Baric; Fernando Pardo-Manuel de Villena; Heinz Feldmann; Michael G. Katze

Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Intercrossed mice infected with Ebola virus show a spectrum of pathology from prolonged coagulation to total resistance. Variety of Ebola symptoms in mice Apart from monkeys, there are no animal models available that show the same symptoms of Ebola virus infection as those of humans. Rasmussen et al. tested the effects of Ebola virus in mice with defined genetic backgrounds in a series of pains-taking experiments performed under stringent biosafety conditions. Resistance and susceptibility to Ebola virus was associated with distinct genetic profiles in inflammation, blood coagulation, and vascular function. This panel of mice could prove valuable for preliminary screens of candidate therapeutics and vaccines. Science, this issue p. 987


Mbio | 2014

Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses

Vineet D. Menachery; Amie J. Eisfeld; Alexandra Schäfer; Laurence Josset; Amy C. Sims; Sean Proll; Shufang Fan; Chengjun Li; Gabriele Neumann; Susan C. Tilton; Jean Chang; Lisa E. Gralinski; Casey Long; Richard Green; Christopher M. Williams; Jeffrey M. Weiss; Melissa M. Matzke; Bobbie Jo M Webb-Robertson; Athena A. Schepmoes; Anil K. Shukla; Thomas O. Metz; Richard D. Smith; Katrina M. Waters; Michael G. Katze; Yoshihiro Kawaoka; Ralph S. Baric

ABSTRACT The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications. IMPORTANCE This work combines systems biology and experimental validation to identify and confirm strategies used by viruses to control the immune response. Using a novel screening approach, specific comparison between highly pathogenic influenza viruses and coronaviruses revealed similarities and differences in strategies to control the interferon and innate immune response. These findings were subsequently confirmed and explored, revealing both a common pathway of antagonism via type I interferon (IFN) delay as well as a novel avenue for control by altered histone modification. Together, the data highlight how comparative systems biology analysis can be combined with experimental validation to derive novel insights into viral pathogenesis. This work combines systems biology and experimental validation to identify and confirm strategies used by viruses to control the immune response. Using a novel screening approach, specific comparison between highly pathogenic influenza viruses and coronaviruses revealed similarities and differences in strategies to control the interferon and innate immune response. These findings were subsequently confirmed and explored, revealing both a common pathway of antagonism via type I interferon (IFN) delay as well as a novel avenue for control by altered histone modification. Together, the data highlight how comparative systems biology analysis can be combined with experimental validation to derive novel insights into viral pathogenesis.


Mbio | 2011

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4+ T Cell Line

Stewart T. Chang; Pavel Sova; Xinxia Peng; Jeffrey M. Weiss; G. L. Law; Robert E. Palermo; Michael G. Katze

ABSTRACT Next-generation sequencing (NGS) enables the highly sensitive measurement of whole transcriptomes. We report the first application to our knowledge of this technology to the analysis of RNA from a CD4+ T cell line infected with intact HIV. We sequenced the total mRNA from infected cells and detected differences in the expression of both host and viral mRNA. Viral reads represented a large portion of the total mapped sequencing reads: approximately 20% at 12 h postinfection (hpi) and 40% at 24 hpi. We also detected a small but significant suppression of T cell activation-related genes at 12 hpi. This suppression persisted and expanded by 24 hpi, providing new possible markers of virus-induced T cell cytopathology. By 24 hpi, the expression of over 50% of detectable host loci was also altered, indicating widespread alteration of host processes, including RNA processing, splicing, and transport to an extent not previously reported. In addition, next-generation sequencing provided insights into alternative viral RNA splice events and the expression of noncoding RNAs, including microRNA host genes. IMPORTANCE Recent advances in sequencing technology now allow the measurement of effectively all the RNA in a cell. This approach is especially useful for studying models of virus infection, as it allows the simultaneous measurement of both host and viral RNA. Using next-generation sequencing (NGS), we measured changes in total mRNA from a HIV-infected T cell line. To our knowledge, this is the first application of this technology to the investigation of HIV-host interactions involving intact HIV. We directly measured the amount of viral mRNA in infected cells and detected novel viral RNA splice variants and changes in the host expression of noncoding RNA species. We also detected small changes in T cell activation and other host processes during the early stages of viral replication that increased near the peak of viral replication, providing new candidate biomarkers of T cell death. Recent advances in sequencing technology now allow the measurement of effectively all the RNA in a cell. This approach is especially useful for studying models of virus infection, as it allows the simultaneous measurement of both host and viral RNA. Using next-generation sequencing (NGS), we measured changes in total mRNA from a HIV-infected T cell line. To our knowledge, this is the first application of this technology to the investigation of HIV-host interactions involving intact HIV. We directly measured the amount of viral mRNA in infected cells and detected novel viral RNA splice variants and changes in the host expression of noncoding RNA species. We also detected small changes in T cell activation and other host processes during the early stages of viral replication that increased near the peak of viral replication, providing new candidate biomarkers of T cell death.


Nucleic Acids Research | 2013

The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics

Lenore Pipes; Sheng Li; Marjan Bozinoski; Robert E. Palermo; Xinxia Peng; Philip D. Blood; Sara Kelly; Jeffrey M. Weiss; Jean Thierry-Mieg; Danielle Thierry-Mieg; Paul Zumbo; Ronghua Chen; Gary P. Schroth; Christopher E. Mason; Michael G. Katze

RNA-based next-generation sequencing (RNA-Seq) provides a tremendous amount of new information regarding gene and transcript structure, expression and regulation. This is particularly true for non-coding RNAs where whole transcriptome analyses have revealed that the much of the genome is transcribed and that many non-coding transcripts have widespread functionality. However, uniform resources for raw, cleaned and processed RNA-Seq data are sparse for most organisms and this is especially true for non-human primates (NHPs). Here, we describe a large-scale RNA-Seq data and analysis infrastructure, the NHP reference transcriptome resource (http://nhprtr.org); it presently hosts data from12 species of primates, to be expanded to 15 species/subspecies spanning great apes, old world monkeys, new world monkeys and prosimians. Data are collected for each species using pools of RNA from comparable tissues. We provide data access in advance of its deposition at NCBI, as well as browsable tracks of alignments against the human genome using the UCSC genome browser. This resource will continue to host additional RNA-Seq data, alignments and assemblies as they are generated over the coming years and provide a key resource for the annotation of NHP genomes as well as informing primate studies on evolution, reproduction, infection, immunity and pharmacology.


Virology | 2012

Quantitative Proteomic Analysis of HIV-1 Infected CD4+ T Cells Reveals an Early Host Response in Important Biological Pathways: Protein Synthesis, Cell Proliferation, and T-cell Activation

Arti T. Navare; Pavel Sova; David E. Purdy; Jeffrey M. Weiss; Alejandro Wolf-Yadlin; Marcus J. Korth; Stewart T. Chang; Sean Proll; Tahmina A. Jahan; Alexei L. Krasnoselsky; Robert E. Palermo; Michael G. Katze

Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value ≤ 0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.


Nucleic Acids Research | 2015

Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR)

Xinxia Peng; Jean Thierry-Mieg; Danielle Thierry-Mieg; Andrew Nishida; Lenore Pipes; Marjan Bozinoski; Matthew J. Thomas; Sara Kelly; Jeffrey M. Weiss; Muthuswamy Raveendran; Donna M. Muzny; Richard A. Gibbs; Jeffrey Rogers; Gary P. Schroth; Michael G. Katze; Christopher E. Mason

The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/) aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of ∼20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same ∼15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.


Scientific Data | 2014

A comprehensive collection of systems biology data characterizing the host response to viral infection

Brian D. Aevermann; Brett E. Pickett; Sanjeev Kumar; Edward B. Klem; Sudhakar Agnihothram; Peter S. Askovich; Armand Bankhead; Meagen Bolles; Victoria S. Carter; Jean Chang; Therese R. Clauss; Pradyot Dash; Alan H. Diercks; Amie J. Eisfeld; Amy B. Ellis; Shufang Fan; Martin T. Ferris; Lisa E. Gralinski; Richard Green; Marina A. Gritsenko; Masato Hatta; Robert A. Heegel; Jon M. Jacobs; Sophia Jeng; Laurence Josset; Shari M. Kaiser; Sara Kelly; G. Lynn Law; Chengjun Li; Jiangning Li

The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.


Journal of Virology | 2014

Deep transcriptional sequencing of mucosal challenge compartment from rhesus macaques acutely infected with simian immunodeficiency virus implicates loss of cell adhesion preceding immune activation

Fredrik Barrenas; Robert E. Palermo; Brian Agricola; Michael B. Agy; Lauri D. Aicher; Victoria S. Carter; Leon Flanary; Richard Green; Randy McLain; Qingsheng Li; Wuxun Lu; Robert D. Murnane; Xinxia Peng; Matthew J. Thomas; Jeffrey M. Weiss; David M. Anderson; Michael G. Katze

ABSTRACT Pathology resulting from human immunodeficiency virus (HIV) infection is driven by protracted inflammation; the primary loss of CD4+ T cells is caused by activation-driven apoptosis. Recent studies of nonhuman primates (NHPs) have suggested that during the acute phase of infection, antiviral mucosal immunity restricts viral replication in the primary infection compartment. These studies imply that HIV achieves systemic infection as a consequence of a failure in host antiviral immunity. Here, we used high-dose intrarectal inoculation of rhesus macaques with simian immunodeficiency virus (SIV) SIVmac251 to examine how the mucosal immune system is overcome by SIV during acute infection. The host response in rectal mucosa was characterized by deep mRNA sequencing (mRNA-seq) at 3 and 12 days postinoculation (dpi) in 4 animals for each time point. While we observed a strong host transcriptional response at 3 dpi, functions relating to antiviral immunity were absent. Instead, we observed a significant number of differentially expressed genes relating to cell adhesion and reorganization of the cytoskeleton. We also observed downregulation of genes encoding members of the claudin family of cell adhesion molecules, which are coexpressed with genes associated with pathology in the colorectal mucosa, and a large number of noncoding transcripts. In contrast, at 12 dpi the differentially expressed genes were enriched in those involved with immune system functions, in particular, functions relating to T cells, B cells, and NK cells. Our findings indicate that host responses that negatively affect mucosal integrity occur before inflammation. Consequently, when inflammation is activated at peak viremia, mucosal integrity is already compromised, potentially enabling rapid tissue damage, driving further inflammation. IMPORTANCE The HIV pandemic is one of the major threats to human health, causing over a million deaths per year. Recent studies have suggested that mucosal antiviral immune responses play an important role in preventing systemic infection after exposure to the virus. Yet, despite their potential role in decreasing transmission rates between individuals, these antiviral mechanisms are poorly understood. Here, we carried out the first deep mRNA sequencing analysis of mucosal host responses in the primary infection compartment during acute SIV infection. We found that during acute infection, a significant host response was mounted in the mucosa before inflammation was triggered. Our analysis indicated that the response has a detrimental effect on tissue integrity, causing increased permeability, tissue damage, and recruitment of SIV target cells. These results emphasize the importance of mucosal host responses preceding immune activation in preventing systemic SIV infection.


Clinical and Vaccine Immunology | 2014

Multiple low-dose challenges in a rhesus macaque AIDS vaccine trial result in an evolving host response that affects protective outcome.

Christian Selinger; Natasa Strbo; Louis Gonzalez; Lauri D. Aicher; Jeffrey M. Weiss; G. Lynn Law; Robert E. Palermo; Monica Vaccari; Genoveffa Franchini; Eckhard R. Podack; Michael G. Katze

ABSTRACT Using whole-blood transcriptional profiling, we investigated differences in the host response to vaccination and challenge in a rhesus macaque AIDS vaccine trial. Samples were collected from animals prior to and after vaccination with live, irradiated vaccine cells secreting the modified endoplasmic reticulum chaperone gp96-Ig loaded with simian immunodeficiency virus (SIV) peptides, either alone or in combination with a SIV-gp120 protein boost. Additional samples were collected following multiple low-dose rectal challenges with SIVmac251. Animals in the boosted group had a 73% reduced risk of infection. Surprisingly, few changes in gene expression were observed during the vaccination phase. Focusing on postchallenge comparisons, in particular for protected animals, we identified a host response signature of protection comprised of strong interferon signaling after the first challenge, which then largely abated after further challenges. We also identified a host response signature, comprised of early macrophage-mediated inflammatory responses, in animals with undetectable viral loads 5 days after the first challenge but with unusually high viral titers after subsequent challenges. Statistical analysis showed that prime-boost vaccination significantly lowered the probability of infection in a time-consistent manner throughout several challenges. Given that humoral responses in the prime-boost group were highly significant prechallenge correlates of protection, the strong innate signaling after the first challenge suggests that interferon signaling may enhance vaccine-induced antibody responses and is an important contributor to protection from infection during repeated low-dose exposure to SIV.


Cell Reports | 2017

A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection

Mukta Dutta; Shelly J. Robertson; Atsushi Okumura; Dana P. Scott; Jean Chang; Jeffrey M. Weiss; Gail Sturdevant; Friederike Feldmann; Elaine Haddock; Abhilash I. Chiramel; Sanket S. Ponia; Jonathan D. Dougherty; Michael G. Katze; Angela L. Rasmussen; Sonja M. Best

Collaboration


Dive into the Jeffrey M. Weiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Green

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Xinxia Peng

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Sara Kelly

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Lynn Law

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jean Chang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge