Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey M. Zaleski is active.

Publication


Featured researches published by Jeffrey M. Zaleski.


The EMBO Journal | 2003

Signal transduction by the global regulator RegB is mediated by a redox-active cysteine

Lee R. Swem; Brian J. Kraft; Danielle L. Swem; Aaron T. Setterdahl; Shinji Masuda; David B. Knaff; Jeffrey M. Zaleski; Carl E. Bauer

All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB–RegA signal transduction cascade to control a wide variety of oxygen‐responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal‐dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel ‘redox‐box’ that is present in sensor kinases from diverse species of bacteria.


Chemical Communications | 2003

Accelerated Bergman cyclization of porphyrinic-enediynesElectronic supplementary information (ESI) available: syntheses, characterization of 2a–4b, crystallographic files (CCDC 200680–200685) in CIF format. See http://www.rsc.org/suppdata/cc/b2/b212923j/

Mahendra Nath; John C. Huffman; Jeffrey M. Zaleski

The Bergman cyclization of simple diethynylporphyrinic-enediynes exhibits a double activation barrier to the formation of Bergman cyclized product. Addition of H-atom acceptor accelerates the formation of the picenoporphyrin, indicating that the second barrier is rate limiting.


Chemical Communications | 2006

Elucidation of the extraordinary 4-membered pyrrole ring-contracted azeteoporphyrinoid as an intermediate in chlorin oxidation

Tillmann Köpke; Maren Pink; Jeffrey M. Zaleski

Reaction of 2,3-dioxochlorins with benzeneselenic anhydride (BSA) results in the formation of unusual ring-contracted azetine derivatives that further react with BSA to afford porpholactones.


Journal of the American Chemical Society | 2008

Expansion by Contraction: Diversifying the Photochemical Reactivity Scope of Diazo-oxochlorins toward Development of in situ Alkylating Agents

Tillmann Köpke; Maren Pink; Jeffrey M. Zaleski

Irradiation of 2-diazo-3-oxochlorins (200 W, lambda > or = 345 nm, 10 degrees C) in the presence of nucleophilic and biomimetic substrates 1-butanol, tosylhydrazine, or tetrahydrofurfuryl alcohol generates Wolff-rearranged, pyrrole ring-contracted azeteoporphyrinoids in 11-34% yield, with the corresponding hydroxyporphyrins in up to 55% yield. For metalated diazo-oxochlorins, these products compete with intramolecular exocyclic ring formation by meso-phenyl ring addition, which occurs in up to 76% yield in the absence of substrate. The dependence of product distribution on substrate is established by photolysis in neat dichlorometane. Under these conditions, formation of the Wolff-rearranged product is inhibited and the phenyl addition product dominates (76%) due to the absence of a good nucleophile. A conceptually analogous dependence is also observed for the free-base derivative, with the exocyclic ring-containing dimerization product isolated in 42% yield. The third reaction pathway, formation of the hydroxyporphyrin, is enhanced by the presence of non-nucleophilic, oxidizable substrates such as 1,4-cyclohexadiene (M = Cu; 55%); however, in the presence of the bulky and oxidatively more stable tert-butyl alcohol, intramolecular exocyclic ring-quenching is observed in 51% yield with no detection of the hydroxyporphyrin. X-ray structure characterization of the azeteoporphyrinoids reveals a planar macrocycle, illustrating the strong influence of periphery contraction. Specifically, the copper-containing azeteoporphyrinoids show remarkably short Cu-N(azete) distances of 1.88-1.90 A. All porphyrinoid photoproducts possess intense absorption bands throughout the visible spectral region, indicating that ring-contracted substrate adducts, as well as phenyl ring addition products, maintain porphyrinoid aromaticity. Overall, the ability of these chromophores to photochemically react under substrate control may make unimolecular porphyrinoid photoreagents such as these useful for applications in photobiology or O2-independent photodynamic therapy.


Organic and Biomolecular Chemistry | 2006

Photochemical preparation of pyrrole ring-contracted chlorins by the Wolff rearrangement.

Tillmann Köpke; Maren Pink; Jeffrey M. Zaleski

Photolysis of the Ni(II), Cu(II), and Zn(II) 2-diazo-3-oxochlorins generates 4-membered rings containing azeteoporphyrins.


Inorganic Chemistry | 2012

Modulating the Light Switch by [superscript 3]MLCT-[superscript 3]pi pi* State Interconversion

Brigitte R. Spencer; Brian J. Kraft; Chris G. Hughes; Maren Pink; Jeffrey M. Zaleski

The spectroscopic, electronic, and DNA-binding characteristics of two novel ruthenium complexes based on the dialkynyl ligands 2,3-bis(phenylethynyl)-1,4,8,9-tetraaza-triphenylene (bptt, 1) and 2,3-bis(4-tert-butyl-phenylethynyl)-1,4,8,9-tetraaza-triphenylene (tbptt, 2) have been investigated. Electronic structure calculations of bptt reveal that the frontier molecular orbitals are localized on the pyrazine-dialkynyl portion of the free ligand, a property that is reflected in a red shift of the lowest energy electronic transition (1: λ(max) = 393 nm) upon substitution at the terminal phenyl groups (2: λ(max) = 398 nm). Upon coordination to ruthenium, the low-energy ligand-centered transitions of 1 and 2 are retained, and metal-to-ligand charge transfer transitions (MLCT) centered at λ(max) = 450 nm are observed for [Ru(phen)(2)bptt](2+)(3) and [Ru(phen)(2)tbptt](2+)(4). The photophysical characteristics of 3 and 4 in ethanol closely parallel those observed for [Ru(bpy)(3)](2+) and [Ru(phen)(3)](2+), indicating that the MLCT excited state is primarily localized within the [Ru(phen)(3)](2+) manifold of 3 and 4, and is only sparingly affected by the extended conjugation of the bptt framework. In an aqueous environment, 3 and 4 possess notably small luminescence quantum yields (3: ϕ(H(2)O) = 0.005, 4: ϕ(H(2)O) = 0.011) and biexponential decay kinetics (3: τ(1) = 40 ns, τ(2) = 230 ns; 4: τ(1) ∼ 26 ns, τ(2) = 150 ns). Addition of CT-DNA to an aqueous solution of 3 causes a significant increase in the luminescence quantum yield (ϕ(DNA) = 0.045), while the quantum yield of 4 is relatively unaffected (ϕ(DNA) = 0.013). The differential behavior demonstrates that tert-butyl substitution on the terminal phenyl groups inhibits the ability of 4 to intercalate with DNA. Such changes in intrinsic luminescence demonstrate that 3 binds to DNA via intercalation (K(b) = 3.3 × 10(4) M(-1)). The origin of this light switch behavior involves two competing (3)MLCT states similar to that of the extensively studied light switch molecule [Ru(phen)(2)dppz](2+). The solvent- and temperature-dependence of the luminescence of 3 reveal that the extended ligand aromaticity lowers the energy of the (3)ππ* excited state into competition with the emitting (3)MLCT state. Interconversion between these two states plays a significant role in the observed photophysics and is responsible for the dual emission in aqueous environments.


Inorganic Chemistry | 2010

Modulating the light switch by (3)MLCT-(3)ππ* state interconversion.

Brigitte R. Spencer; Brian J. Kraft; Chris G. Hughes; Maren Pink; Jeffrey M. Zaleski

The spectroscopic, electronic, and DNA-binding characteristics of two novel ruthenium complexes based on the dialkynyl ligands 2,3-bis(phenylethynyl)-1,4,8,9-tetraaza-triphenylene (bptt, 1) and 2,3-bis(4-tert-butyl-phenylethynyl)-1,4,8,9-tetraaza-triphenylene (tbptt, 2) have been investigated. Electronic structure calculations of bptt reveal that the frontier molecular orbitals are localized on the pyrazine-dialkynyl portion of the free ligand, a property that is reflected in a red shift of the lowest energy electronic transition (1: λ(max) = 393 nm) upon substitution at the terminal phenyl groups (2: λ(max) = 398 nm). Upon coordination to ruthenium, the low-energy ligand-centered transitions of 1 and 2 are retained, and metal-to-ligand charge transfer transitions (MLCT) centered at λ(max) = 450 nm are observed for [Ru(phen)(2)bptt](2+)(3) and [Ru(phen)(2)tbptt](2+)(4). The photophysical characteristics of 3 and 4 in ethanol closely parallel those observed for [Ru(bpy)(3)](2+) and [Ru(phen)(3)](2+), indicating that the MLCT excited state is primarily localized within the [Ru(phen)(3)](2+) manifold of 3 and 4, and is only sparingly affected by the extended conjugation of the bptt framework. In an aqueous environment, 3 and 4 possess notably small luminescence quantum yields (3: ϕ(H(2)O) = 0.005, 4: ϕ(H(2)O) = 0.011) and biexponential decay kinetics (3: τ(1) = 40 ns, τ(2) = 230 ns; 4: τ(1) ∼ 26 ns, τ(2) = 150 ns). Addition of CT-DNA to an aqueous solution of 3 causes a significant increase in the luminescence quantum yield (ϕ(DNA) = 0.045), while the quantum yield of 4 is relatively unaffected (ϕ(DNA) = 0.013). The differential behavior demonstrates that tert-butyl substitution on the terminal phenyl groups inhibits the ability of 4 to intercalate with DNA. Such changes in intrinsic luminescence demonstrate that 3 binds to DNA via intercalation (K(b) = 3.3 × 10(4) M(-1)). The origin of this light switch behavior involves two competing (3)MLCT states similar to that of the extensively studied light switch molecule [Ru(phen)(2)dppz](2+). The solvent- and temperature-dependence of the luminescence of 3 reveal that the extended ligand aromaticity lowers the energy of the (3)ππ* excited state into competition with the emitting (3)MLCT state. Interconversion between these two states plays a significant role in the observed photophysics and is responsible for the dual emission in aqueous environments.


Journal of the American Chemical Society | 2013

Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

Sarah E. Lindahl; Hyunsoo Park; Maren Pink; Jeffrey M. Zaleski

Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and resulting cisplatin-like byproduct represents an intriguing new strategy for potential dual-threat metalloenediyne therapeutics.


International Journal of Hyperthermia | 2011

Potentiation of metalloenediyne cytotoxicity by hyperthermia

Stefan M. Routt; Ju Zhu; Jeffrey M. Zaleski; Joseph R. Dynlacht

Purpose: Enediynes are potent inducers of DNA damage, but their clinical usefulness has been limited. Here we report the thermal enhancement of cytotoxicity of two novel metalloenediyne compounds at concentrations that are either not or minimally cytotoxic at 37°C, and present evidence regarding possible mechanisms for enhanced cytotoxicity. Materials and methods: HeLa cells were exposed to (Z)-N,N′-bis[1-pyridyl-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine (PyED) (which becomes metallated in culture medium) or ((Z)-N,N′-bis[quinolin-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine)zinc(II) chloride (QuinED · ZnCl2) at 37°C or 42.5°C for 1 h, and clonogenic survival was compared after treatment at each temperature. Analyses of cell cycle progression and mode of death were performed after treatments. Results: Treatment with PyED or QuinED · ZnCl2 resulted in a significant decrease in cell survival when cells were treated with drug at 42.5°C compared to 37°C. Enhanced cytotoxicity was attributed to increased apoptosis. However, perturbation of the cell cycle may also play a role. Cells which were only heated or exposed to PyED at 37°C experienced significant G2/M blocks that were eliminated when PyED and heat were administered simultaneously, suggesting that combined treatments override cell cycle arrests normally observed with each agent individually. Conversely, cells heated during treatment with QuinED · ZnCl2 displayed an increased G2/M arrest compared to treatment at 37°C. Conclusions: With improvements in site-specific heat delivery to tumours, systemic administration of non-toxic metalloenediynes coupled with localised hyperthermia may improve selective enediyne activation/targeting. Therefore PyED and QuinED · ZnCl2, which show significantly enhanced cytotoxicity at elevated temperatures, may represent viable candidates for thermochemotherapy.


Chemistry: A European Journal | 2011

Conformational and Electronic Consequences in Crafting Extended, π‐Conjugated, Light‐Harvesting Macrocycles

Leigh J. K. Boerner; Shivnath Mazumder; Maren Pink; Mu-Hyun Baik; Jeffrey M. Zaleski

The synthesis of a new series of free-base, Ni(II) and Zn(II) 2,3,12,13-tetra(ethynyl)-5,10,15,20-tetraphenyl porphyrins is described. Upon heating, two of the four ethynyl moieties undergo Bergman cyclization to afford the monocyclized 2,3-diethynyl-5,20-diphenylpiceno[10,11,12,13,14,15-jklmn]porphyrin in 30 %, 10 %, and trace yields, respectively. The structures of all products were investigated by using quantum chemical calculations and the free-base analogue was isolated and crystallized; all compounds show significant deviation from the idealized planar structure. No fully-cyclized bispiceno[20,1,2,3,4,5,10,11,12,13,14,15-fghij]porphyrin was isolated from the reaction mixture. To understand why only two of the four enthynyl groups undergo Bergman cyclization, the reaction coordinates were examined by using DFT at the PWPW91/cc-pVTZ(-f) level coupled to a continuum solvation model. The barrier to cyclization of the second pair of ethynyl groups was found to be 5.5 kcal  mol(-1) higher than the first, suggesting a negative cooperative effect and significantly slower rate for the second cyclization. Cyclization reactions for model porphyrin-enediynes with ethene- and H-functionality substitutions at the meso-phenyl rings were also examined, and found to have a similar barrier to diradical formation for the second cyclization event as for the first in these highly planar molecules. By enforcing an artificial 30° cant in two of the pyrrole rings of the porphyrin, the second barrier was increased by 2 kcal  mol(-1) in the ethene model system; this suggests that the disruption of the π conjugation of the extended porphyrin structure is the cause of the increased barrier to the second cyclization event.

Collaboration


Dive into the Jeffrey M. Zaleski's collaboration.

Top Co-Authors

Avatar

Maren Pink

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Mircea Chipara

The University of Texas Rio Grande Valley

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. Dye

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

John C. Huffman

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Tillmann Köpke

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Aurora E. Clark

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge