Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey N. Bruce is active.

Publication


Featured researches published by Jeffrey N. Bruce.


Science | 2007

Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells.

Ana C. Anderson; David E. Anderson; Lisa Bregoli; William Hastings; Nasim Kassam; Charles Lei; Rucha Chandwaskar; Jozsef Karman; Ee W Su; Mitsuomi Hirashima; Jeffrey N. Bruce; Lawrence P. Kane; Vijay K. Kuchroo; David A. Hafler

CD4+ T helper 1 (TH1) cells are important mediators of inflammation and are regulated by numerous pathways, including the negative immune receptor Tim-3. We found that Tim-3 is constitutively expressed on cells of the innate immune system in both mice and humans, and that it can synergize with Toll-like receptors. Moreover, an antibody agonist of Tim-3 acted as an adjuvant during induced immune responses, and Tim-3 ligation induced distinct signaling events in T cells and dendritic cells; the latter finding could explain the apparent divergent functions of Tim-3 in these cell types. Thus, by virtue of differential expression on innate versus adaptive immune cells, Tim-3 can either promote or terminate TH1 immunity and may be able to influence a range of inflammatory conditions.


Frontiers in Neuroendocrinology | 2004

Human pineal physiology and functional significance of melatonin

M. Mila Macchi; Jeffrey N. Bruce

Descriptions of the pineal gland date back to antiquity, but its functions in humans are still poorly understood. In both diurnal and nocturnal vertebrates, its main product, the hormone melatonin, is synthesized and released in rhythmic fashion, during the dark portion of the day-night cycle. Melatonin production is controlled by an endogenous circadian timing system and is also suppressed by light. In lower vertebrates, the pineal gland is photosensitive, and is the site of a self-sustaining circadian clock. In mammals, including humans, the gland has lost direct photosensitivity, but responds to light via a multisynaptic pathway that includes a subset of retinal ganglion cells containing the newly discovered photopigment, melanopsin. The mammalian pineal also shows circadian oscillations, but these damp out within a few days in the absence of input from the primary circadian pacemaker in the suprachiasmatic nuclei (SCN). The duration of the nocturnal melatonin secretory episode increases with nighttime duration, thereby providing an internal calendar that regulates seasonal cycles in reproduction and other functions in photoperiodic species. Although humans are not considered photoperiodic, the occurrence of seasonal affective disorder (SAD) and its successful treatment with light suggest that they have retained some photoperiodic responsiveness. In humans, exogenous melatonin has a soporific effect, but only when administered during the day or early evening, when endogenous levels are low. Some types of primary insomnia have been attributed to diminished melatonin production, particularly in the elderly, but evidence of a causal link is still inconclusive. Melatonin administration also has mild hypothermic and hypotensive effects. A role for the pineal in human reproduction was initially hypothesized on the basis of clinical observations on the effects of pineal tumors on sexual development. More recent data showing an association between endogenous melatonin levels and the onset of puberty, as well as observations of elevated melatonin levels in both men and women with hypogonadism and/or infertility are consistent with such a hypothesis, but a regulatory role of melatonin has yet to be established conclusively. A rapidly expanding literature attests to the involvement of melatonin in immune function, with high levels promoting and low levels suppressing a number of immune system parameters. The detection of melatonin receptors in various lymphoid organs and in lymphocytes suggests multiple mechanisms of action. Melatonin has been shown to be a powerful antioxidant, and has oncostatic properties as well, both direct and indirect, the latter mediated by its effects on reproductive hormones. Finally, there are reports of abnormal daily melatonin profiles in a number of psychiatric and neurological disorders, but the significance of such abnormalities is far from clear.


European Journal of Cancer | 2012

NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: A randomised phase III trial of a novel treatment modality

Roger Stupp; Eric T. Wong; Andrew A. Kanner; David M. Steinberg; Herbert H. Engelhard; Volkmar Heidecke; Eilon D. Kirson; Sophie Taillibert; Frank Liebermann; Vladimír Dbalý; Zvi Ram; J. Lee Villano; Nikolai G. Rainov; Uri Weinberg; David Schiff; Lara Kunschner; Jeffrey Raizer; Jérôme Honnorat; Andrew E. Sloan; Mark G. Malkin; Joseph Landolfi; Franz Payer; Maximilian Mehdorn; Robert J. Weil; Susan Pannullo; Manfred Westphal; Martin Smrčka; Lawrence Chin; Herwig Kostron; Silvia Hofer

PURPOSE NovoTTF-100A is a portable device delivering low-intensity, intermediate frequency electric fields via non-invasive, transducer arrays. Tumour Treatment Fields (TTF), a completely new therapeutic modality in cancer treatment, physically interfere with cell division. METHODS Phase III trial of chemotherapy-free treatment of NovoTTF (20-24h/day) versus active chemotherapy in the treatment of patients with recurrent glioblastoma. Primary end-point was improvement of overall survival. RESULTS Patients (median age 54 years (range 23-80), Karnofsky performance status 80% (range 50-100) were randomised to TTF alone (n=120) or active chemotherapy control (n=117). Number of prior treatments was two (range 1-6). Median survival was 6.6 versus 6.0 months (hazard ratio 0.86 [95% CI 0.66-1.12]; p=0.27), 1-year survival rate was 20% and 20%, progression-free survival rate at 6 months was 21.4% and 15.1% (p=0.13), respectively in TTF and active control patients. Responses were more common in the TTF arm (14% versus 9.6%, p=0.19). The TTF-related adverse events were mild (14%) to moderate (2%) skin rash beneath the transducer arrays. Severe adverse events occurred in 6% and 16% (p=0.022) of patients treated with TTF and chemotherapy, respectively. Quality of life analyses favoured TTF therapy in most domains. CONCLUSIONS This is the first controlled trial evaluating an entirely novel cancer treatment modality delivering electric fields rather than chemotherapy. No improvement in overall survival was demonstrated, however efficacy and activity with this chemotherapy-free treatment device appears comparable to chemotherapy regimens that are commonly used for recurrent glioblastoma. Toxicity and quality of life clearly favoured TTF.


The Journal of Neuroscience | 2006

Glial Progenitors in Adult White Matter Are Driven to Form Malignant Gliomas by Platelet-Derived Growth Factor-Expressing Retroviruses

Marcela Assanah; Richard Lochhead; Alfred T. Ogden; Jeffrey N. Bruce; James E. Goldman; Peter Canoll

To test the gliomagenic potential of adult glial progenitors, we infected adult rat white matter with a retrovirus that expresses high levels of PDGF and green fluorescent protein (GFP). Tumors that closely resembled human glioblastomas formed in 100% of the animals by 14 d postinfection. Surprisingly, the tumors were composed of a heterogeneous population of cells, <20% of which expressed the retroviral reporter gene (GFP). The vast majority of both GFP+ and GFP– tumor cells expressed markers of glial progenitors. Thus, the tumors arose from the massive expansion of both infected and uninfected glial progenitors, suggesting that PDGF was driving tumor formation via autocrine and paracrine stimulation of glial progenitor cells. To explore this possibility further, we coinjected a retrovirus expressing PDGF-IRES-DsRed with a control retrovirus expressing only GFP. The resulting tumors contained a mixture of red cells (PDGF-expressing/tumor-initiating cells) and green cells (recruited progenitors). Both populations were highly proliferative and infiltrative. In contrast, when the control GFP retrovirus was injected alone, the animals never formed tumors and the majority of infected cells differentiated along the oligodendrocyte lineage. Together, these results reveal that adult white matter progenitors not only have the capacity to give rise to gliomas, but resident progenitors are recruited to proliferate within the mitogenic environment of the tumor and in this way contribute significantly to the heterogeneous mass of cells that compose a malignant glioma.


Nature Genetics | 2013

The integrated landscape of driver genomic alterations in glioblastoma

Veronique Frattini; Vladimir Trifonov; Joseph Chan; Angelica Castano; Marie Lia; Francesco Abate; Stephen T. Keir; Alan X. Ji; Pietro Zoppoli; Francesco Niola; Carla Danussi; Igor Dolgalev; Paola Porrati; Serena Pellegatta; Adriana Heguy; Gaurav Gupta; David Pisapia; Peter Canoll; Jeffrey N. Bruce; Roger E. McLendon; Hai Yan; Kenneth D. Aldape; Gaetano Finocchiaro; Tom Mikkelsen; Gilbert G. Privé; Darell D. Bigner; Anna Lasorella; Raul Rabadan; Antonio Iavarone

Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR1 function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in CTNND2 target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 being the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.


Glia | 2006

Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis.

Azadeh Farin; Satoshi Suzuki; Michael Weiker; James E. Goldman; Jeffrey N. Bruce; Peter Canoll

Glioma cells have a remarkable capacity to infiltrate the brain and migrate long distances from the tumor, making complete surgical resection impossible. Yet, little is known about how glioma cells interact with the complex microenvironment of the brain. To investigate the patterns and dynamics of glioma cell infiltration and migration, we stereotactically injected eGFP and DsRed‐2 labeled rat C6 glioma cells into neonatal rat forebrains and used time‐lapse microscopy to observe glioma cell migration and proliferation in slice cultures generated from these brains. In this model, glioma cells extensively infiltrated the brain by migrating along the abluminal surface of blood vessels. Glioma cells intercalated their processes between the endothelial cells and the perivascular astrocyte end feet, but did not invade into the blood vessel lumen. Dynamic analysis revealed notable similarities between the migratory behavior of glioma cells and that previously observed for glial progenitor cells. Glioma cells had a characteristic leading process and migrated in a saltatory fashion, with bursts of migration separated by periods of immobility, and maximum speeds of over 100 μm/h. Migrating glioma cells proliferated en route, pausing for as short as an hour to divide before the daughter cells resumed migrating. Remarkably, the majority of glioma cell divisions took place at or near vascular branch points, suggesting that mitosis is triggered by local environmental cues. This study provides the first dynamic analysis of glioma cell infiltration in living brain tissue and reveals that the migration and proliferation of transplanted glioma cells is directed by interactions with host brain vasculature.


Science | 2013

A Secreted PTEN Phosphatase That Enters Cells to Alter Signaling and Survival

Benjamin D. Hopkins; Barry Fine; Nicole Steinbach; Meaghan Dendy; Zachary Rapp; Jacquelyn Shaw; Kyrie Pappas; Jennifer S. Yu; Cindy Hodakoski; Sarah M. Mense; Joshua U. Klein; Sarah Pegno; Maria Luisa Sulis; Hannah Goldstein; Benjamin Amendolara; Liang Lei; Matthew Maurer; Jeffrey N. Bruce; Peter Canoll; Hanina Hibshoosh; Ramon Parsons

PTEN Variations The product of the tumor suppressor gene phosphate and tensin homolog on chromosome ten (PTEN) is a lipid and protein phosphatase that regulates important cellular processes, including growth, survival, and metabolism (see the Perspective by Leslie and Brunton). Though PTEN is best known for effects on the phosphatidylnositol 3-kinase (PI3K) signaling pathway, the PTEN protein is also found in the nucleus. Bassi et al. (p. 395) found that PTENs presence in the nucleus was regulated in response to covalent modification of the protein by SUMOylation and phosphorylation. Cells lacking nuclear PTEN showed increased sensitivity to DNA damage and underwent cell death if the PI3K pathway was also inhibited. Hopkins et al. (p. 399, published online 6 June) discovered an alternative translation start site in human PTEN messenger RNA that allowed expression of a protein, PTEN-Long, with about 170 extra amino acids. The unusual enzyme was released from cells and then taken up into other cells. In a mouse tumor model, uptake of the enzyme inhibited the PI3K pathway and inhibited tumor growth. An alternative translation start site produces an elongated PTEN that can enter tumor cells and kill them. [Also see Perspective by Leslie and Brunton] Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor and an antagonist of the phosphoinositide-3 kinase (PI3K) pathway. We identified a 576–amino acid translational variant of PTEN, termed PTEN-Long, that arises from an alternative translation start site 519 base pairs upstream of the ATG initiation sequence, adding 173 N-terminal amino acids to the normal PTEN open reading frame. PTEN-Long is a membrane-permeable lipid phosphatase that is secreted from cells and can enter other cells. As an exogenous agent, PTEN-Long antagonized PI3K signaling and induced tumor cell death in vitro and in vivo. By providing a means to restore a functional tumor-suppressor protein to tumor cells, PTEN-Long may have therapeutic uses.


Journal of Neurosurgery | 2010

Poor drug distribution as a possible explanation for the results of the PRECISE trial

John H. Sampson; Gary E. Archer; Christoph Pedain; Eva Wembacher-Schröder; Manfred Westphal; Sandeep Kunwar; Michael A. Vogelbaum; April Coan; James E. Herndon; Raghu Raghavan; Martin L. Brady; David A. Reardon; Allan H. Friedman; Henry S. Friedman; M. Inmaculada Rodríguez-Ponce; Susan M. Chang; Stephan Mittermeyer; Davi Croteau; Raj K. Puri; James M. Markert; Michael D. Prados; Thomas C. Chen; Adam N. Mamelak; Timothy F. Cloughesy; John S. Yu; Kevin O. Lillehei; Joseph M. Piepmeier; Edward Pan; Frank D. Vrionis; H. Lee Moffitt

OBJECT Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial. METHODS Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution. RESULTS Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score. CONCLUSIONS The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.


Journal of Neuro-oncology | 2003

Safety, Tolerability, and Tumor Response of IL4-Pseudomonas Exotoxin (NBI-3001) in Patients with Recurrent Malignant Glioma

Friedrich Weber; Anthony L. Asher; Richard D. Bucholz; Mitchel S. Berger; Michael D. Prados; Susan M. Chang; Jeffrey N. Bruce; Walter A. Hall; Nikolai G. Rainov; Manfred Westphal; Ronald E. Warnick; Robert W. Rand; Frank Floeth; Frank Rommel; Henry Pan; Vijay N. Hingorani; Raj K. Puri

SummaryPurpose: This was an open-label, dose-escalation trial of intratumoral administration of IL-4Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. Patients and methods: A total of 31 patients with histologically verified supratentorial grades 3 and 4 astrocytoma were studied. Of these, 25 patients were diagnosed with glioblastoma multiforme (GBM) while six were diagnosed with anaplastic astrocytoma. Patients were over 18 years of age and had Karnofsky performance scores ≥60. Patients were assigned to one of four dose groups in a dose-escalation fashion: 6 µg/ml × 40 ml, 9 µg/ml × 40 ml, 15 µg/ml × 40 ml, or 9 µg/ml × 100 ml of NBI-3001 administered via convection-enhanced delivery intratumorally using stereotactically placed catheters. Patients were followed with serial MRI scans and clinical assessments every four weeks for the first 16 weeks and then every eight weeks until week 26. Results: No drug-related systemic toxicity, as evident by lack of hematological or serum chemical changes, was apparent in any patients; treatment-related adverse effects were limited to the central nervous system. No deaths were attributable to treatment. Drug-related grade 3 or 4 toxicity was seen in 39% of patients in all dose groups and 22% of patients at the maximum tolerated dose of 6 µg/ml × 40 ml. The overall median survival was 8.2 months with a median survival of 5.8 months for the GBM patients. Six-month survival was 52% and 48%, respectively. Gadolinium-enhanced magnetic resonance imaging of the brain showed areas of decreased signal intensity within the tumor consistent with tumor necrosis following treatment in many patients. Conclusions: NBI-3001 appears to have an acceptable safety and toxicity profile when administered intratumorally in patients with recurrent malignant glioma.


Journal of Immunology | 2008

Astrocytic Regulation of Human Monocytic/Microglial Activation

Alex Kostianovsky; Lisa M. Maier; Richard C. E. Anderson; Jeffrey N. Bruce; David E. Anderson

Recent reports have described reduced immunological responsiveness and stimulatory capacity among monocytes/microglia that infiltrate malignant human gliomas. Herein, we demonstrate that culture of ex vivo human monocytes or primary human microglia with tumor cells isolated from glioblastoma multiforme (GBM) specimens renders them tolerogenic, capable of suppressing the function of ex vivo monocytes in the absence of tumor cells or their soluble factors. We demonstrate that the tolerance induced in monocytes/microglia by GBM tumor cells is not associated with interference with the signaling cascade associated with TLR- or CD40-induced monocyte activation. Rather, these tumor cells appear to up-regulate pathways that antagonize positive signaling pathways, including but not limited to STAT3 and STAT5. Finally, we demonstrate that the tolerogenic properties of GBM tumor cells amplify properties inherent to nontransformed astrocytes. Future studies that identify all of the molecular mechanisms by which astrocytes and malignant gliomas suppress monocyte/microglial function will have dual therapeutic benefits: suppressing these pathways may benefit patients with astrocytic tumors, while enhancing them may benefit patients with autoimmune processes within the CNS, such as multiple sclerosis.

Collaboration


Dive into the Jeffrey N. Bruce's collaboration.

Top Co-Authors

Avatar

Peter Canoll

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael B. Sisti

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Sonabend

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard C. E. Anderson

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brad E. Zacharia

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Anderson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge