Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Nicastro is active.

Publication


Featured researches published by Jeffrey Nicastro.


Nature Medicine | 2013

Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis

Xiaoling Qiang; Weng-Lang Yang; Rongqian Wu; Mian Zhou; Asha Jacob; Weifeng Dong; Michael Kuncewitch; Youxin Ji; Huan Yang; Haichao Wang; Jun Fujita; Jeffrey Nicastro; Gene F. Coppa; Kevin J. Tracey; Ping Wang

A systemic inflammatory response is observed in patients undergoing hemorrhagic shock and sepsis. Here we report increased levels of cold-inducible RNA-binding protein (CIRP) in the blood of individuals admitted to the surgical intensive care unit with hemorrhagic shock. In animal models of hemorrhage and sepsis, CIRP is upregulated in the heart and liver and released into the circulation. In macrophages under hypoxic stress, CIRP translocates from the nucleus to the cytosol and is released. Recombinant CIRP stimulates the release of tumor necrosis factor-α (TNF-α) and HMGB1 from macrophages and induces inflammatory responses and causes tissue injury when injected in vivo. Hemorrhage-induced TNF-α and HMGB1 release and lethality were reduced in CIRP-deficient mice. Blockade of CIRP using antisera to CIRP attenuated inflammatory cytokine release and mortality after hemorrhage and sepsis. The activity of extracellular CIRP is mediated through the Toll-like receptor 4 (TLR4)–myeloid differentiation factor 2 (MD2) complex. Surface plasmon resonance analysis indicated that CIRP binds to the TLR4-MD2 complex, as well as to TLR4 and MD2 individually. In particular, human CIRP amino acid residues 106–125 bind to MD2 with high affinity. Thus, CIRP is a damage-associated molecular pattern molecule that promotes inflammatory responses in shock and sepsis.


Molecular Medicine | 2011

Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury.

Akihisa Matsuda; Asha Jacob; Rongqian Wu; Mian Zhou; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

Sepsis and ischemia-reperfusion (I/R) injury are among the leading causes of death in critically ill patients at the surgical intensive care unit setting. Both conditions are marked by the excessive inflammatory response which leads to a lethal disease complex such as acute lung injury, systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Despite the advances in the understanding of the pathophysiology of those conditions, very little progress has been made toward therapeutic interventions. One of the key aspects of these conditions is the accumulation of apoptotic cells that have the potential to release toxic and proinflammatory contents due to secondary necrosis without appropriate clearance by phagocytes. Along with the prevention of apoptosis, that is reported to be beneficial in sepsis and I/R injury, thwarting the development of secondary necrosis through the active removal of apoptotic cells via phagocytosis may offer a novel therapy. Milk fat globule-EGF factor VIII (MFG-E8), which is mainly produced by macrophages and dendritic cells, is an opsonin for apoptotic cells and acts as a bridging protein between apoptotic cells and phagocytes. Recently, we have shown that MFG-E8 expression is decreased in experimental sepsis and I/R injury models. Exogenous administration of MFG-E8 attenuated the inflammatory response as well as tissue injury and mortality through the promotion of phagocytosis of apoptotic cells. In this review, we describe novel information available about the involvement of MFG-E8 in the pathophysiology of sepsis and I/R injury, and the therapeutic potential of exogenous MFG-E8 treatment for those conditions.


Shock | 2013

Growth arrest-specific protein 6 attenuates neutrophil migration and acute lung injury in sepsis.

Matthew Giangola; Weng-Lang Yang; Salil R. Rajayer; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

ABSTRACT Sepsis is an acute inflammatory condition that can result in multiple organ failure and acute lung injury. Growth arrest–specific protein 6 (Gas6) is a broad regulator of the innate immune response involved with the nuclear factor &kgr;B signaling pathway. We hypothesized that Gas6 could have a protective role in attenuating the severity of acute lung injury and sepsis. Male mice were subjected to sepsis by cecal ligation and puncture (CLP) after which recombinant murine Gas6 (rmGas6; 5 &mgr;g/mouse) or normal saline (vehicle) was administered intravenously. Blood and lung tissues were collected at 20 h after CLP for various measurements. Treatment with rmGas6 significantly reduced serum levels of the injury markers aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, as well as proinflammatory cytokines interleukin 6 (IL-6) and IL-17, compared with the vehicle group (P < 0.05). The parenchyma of the lungs damaged by CLP was attenuated by rmGas6 treatment. Lung mRNA levels of tumor necrosis factor &agr;, IL-1&bgr;, IL-6, IL-17, and macrophage inflammatory protein 2 (MIP-2) were decreased by 60%, 86%, 82%, 93%, and 82%, respectively, with rmGas6 treatment as determined by real-time reverse transcriptase–polymerase chain reaction (P < 0.05). The degradation of I&kgr;B-&agr; induced by CLP in the lungs was inhibited by rmGas6 treatment. The number of neutrophils and myeloperoxidase activity in the lungs were significantly reduced in the rmGas6 group. Moreover, rmGas6 reduced the in vitro migration of differentiated human promyelocytic HL60 cells by 64%. Finally, the 10-day survival rate of mice subjected to CLP was increased from 31% in the vehicle group to 67% in the rmGas6 group (P < 0.05). Thus, Gas6 has potential to be developed as a novel therapeutic agent to treat patients with sepsis and acute lung injury.


Shock | 2015

Blocking cold-inducible RNA-binding protein protects liver from ischemia-reperfusion injury.

Andrew Godwin; Weng-Lang Yang; Archna Sharma; Adam Khader; Zhimin Wang; Fangming Zhang; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

ABSTRACT Cold-inducible RNA-binding protein (CIRP) is a nuclear protein that has been recently identified as a novel inflammatory mediator in hemorrhagic shock and sepsis. We hypothesized that CIRP acts as a potent inflammatory mediator in hepatic ischemia-reperfusion (I/R), and thus blocking CIRP protects against I/R-induced liver injury. Male C57BL/6 mice were subjected to 70% hepatic ischemia by microvascular clamping of the hilum of the left and median liver lobes for 60 min, followed by reperfusion. Anti-CIRP antibody (1 mg/kg body weight) or vehicle (normal saline) in 0.2 mL was injected via the internal jugular vein at the beginning of the reperfusion. Blood and liver tissues were collected 24 h after I/R for various measurements, and a 10-day survival study was performed. Cold-inducible RNA-binding protein released into the circulation was significantly increased 24 h after hepatic I/R. Anti-CIRP antibody treatment markedly reduced hepatocellular damage markers and significantly improved the liver microarchitecture. Anti-CIRP also reduced the systemic and local inflammation demonstrated by attenuation in both serum and hepatic levels of interleukin 6. The expression of neutrophil-attracting chemokine as well as liver neutrophil infiltration was reduced by anti-CIRP treatment. Anti-CIRP also dramatically decreased the amount of apoptosis and nitrosative stress, evidenced by decrease in TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining and inducible nitric oxide synthase and cyclooxygenase 2 levels, respectively. Finally, the 10-day survival rate was increased from 37.5% in the vehicle group to 75% in the anti-CIRP treatment group. Thus, targeting CIRP offers potential therapeutic implications in the treatment of hepatic I/R injury.


Shock | 2012

Post-treatment with the combination of 5-aminoimidazole-4-carboxyamide ribonucleoside and carnitine improves renal function after ischemia/reperfusion injury.

Juan-Pablo Idrovo; Weng-Lang Yang; Akihisa Matsuda; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

ABSTRACT Renal ischemia/reperfusion (I/R) injury is a major clinical problem where main metabolic pathways are compromised and cellular homeostasis crashes after ATP depletion. Fatty acids are major energy source in the kidneys. Carnitine palmitoyltransferase I (CPT1), a mitochondrial membrane enzyme, utilizes carnitine to transport fatty acids to mitochondria for the process of &bgr;-oxidation and ATP generation. In addition, CPT1 activity is indirectly regulated by adenosine monophosphate–activated protein kinase, which can be activated by 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR). We hypothesized that administration of carnitine and AICAR could reestablish the energetic balance after reperfusion and ameliorate renal I/R injury. Male adult rats were subjected to renal I/R by bilateral renal pedicle clamping for 60 min, followed by administration of saline (vehicle), carnitine (250 mg/kg BW), AICAR (30 mg/kg BW), or combination of both drugs. Blood and renal tissues were collected 24 h after reperfusion for various measurements. Renal carnitine levels decreased 53% after I/R. The combined treatment significantly increased CPT1 activity and ATP levels and lowered renal malondialdehyde and serum TNF-&agr; levels against the vehicle group. It led to improvement in renal morphology and histological damage score associated with diminution in serum creatinine, blood urea nitrogen, and aspartate aminotransferase levels. Moreover, the combined treatment significantly improved the survival rate in comparison to the vehicle group. In contrast, administration of either drug alone did not show a significant improvement in most of the measurements. In conclusion, enhancing energy metabolism by combination of carnitine and AICAR provides a novel modality to treat renal I/R injury.


Shock | 2013

Wnt agonist attenuates liver injury and improves survival after hepatic ischemia/reperfusion.

Michael Kuncewitch; Weng-Lang Yang; Ernesto P. Molmenti; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

ABSTRACT The Wnt/&bgr;-catenin signaling pathway is well characterized in stem cell biology and plays a critical role in liver development, regeneration, and homeostasis. We hypothesized that pharmacologic activation of Wnt signaling protects against hepatic ischemia/reperfusion (I/R) injury through its known proliferative and antiapoptotic properties. Sprague-Dawley rats underwent 70% hepatic ischemia by microvascular clamping of the hilum of the left and median lobes of the liver for 90 min, followed by reperfusion. Wnt agonist (2-amino-4-[3,4-(methylenedioxy)benzylamino]-6-(3-methoxyphenyl)pyrimidine, 5 mg/kg body weight) or vehicle (20% dimethyl sulfoxide in saline) in 0.5 mL was injected i.p. 1 h before ischemia or infused i.v. over 30 min right after ischemia. Blood and tissue samples from the pretreated groups were collected 24 h after reperfusion, and a survival study was performed. Hepatic expression of &bgr;-catenin and its downstream target gene Axin2 were decreased after I/R, whereas Wnt agonist restored their expression to sham levels. Wnt agonist blunted I/R-induced elevations of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase and significantly improved the microarchitecture of the liver. The cell proliferation determined by Ki67 immunostaining significantly increased with Wnt agonist treatment, and inflammatory cascades were dampened in Wnt agonist–treated animals, as demonstrated by attenuations in interleukin 6, myeloperoxidase, inducible nitric oxide synthase, and nitrotyrosine. Wnt agonist also significantly decreased the amount of apoptosis, as evidenced by decreases in both TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining as well as caspase 3 activity levels. Finally, the 10-day survival rate was increased from 27% in the vehicle group to 73% in the pretreated Wnt agonist group and 55% in the Wnt agonist postischemia treatment group. Thus, we propose that direct Wnt/&bgr;-catenin stimulation may represent a novel therapeutic approach in the treatment of hepatic I/R.


Journal of Trauma-injury Infection and Critical Care | 2012

Milk fat globule epidermal growth factor-factor 8 mitigates inflammation and tissue injury after hemorrhagic shock in experimental animals.

Fangming Zhang; Kavin G. Shah; Lei Qi; Rongqian Wu; Rafael Barrera; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

BACKGROUND: Insufficient clearance of apoptotic cells leads to increased inflammation and exaggerated organ injury. The opsonizing protein, milk fat globule epidermal growth factor-factor 8 (MFG-E8), upregulates apoptotic cell clearance. The purpose of this study was to determine the degree of apoptotic cell clearance, and whether inflammation, organ injury, and survival are improved after treatment with recombinant human MFG-E8 (rhMFG-E8) after hemorrhagic shock. METHODS: Male mice underwent a pressure-controlled (25 mm Hg ± 5 mm Hg) model of hemorrhagic shock for 90 minutes. They were resuscitated with normal saline with or without recombinant human MFG-E8 (rhMFG-E8) over 30 minutes. At 3.5-hour postresuscitation, blood and tissue were collected. MFG-E8 levels in the plasma, lungs, and spleen were measured. Apoptotic cell clearance was measured by cleaved caspase-3 levels and TUNEL staining. Neutrophil infiltration was assessed using myeloperoxidase activity in the lungs and spleen. Plasma and tissue levels of proinflammatory cytokines (IL-1&bgr;, IL-6, and TNF-&agr;) were measured by ELISA. Finally, a seven-day survival study was also conducted. RESULTS: MFG-E8 levels in the plasma, lungs, and spleen significantly decreased by 33%, 44%, and 55%, respectively, at 3.5 hour after hemorrhage and resuscitation with rhMFG-E8. Treatment with rhMFG-E8 significantly improved apoptosis, by reducing TUNEL+ cells after treatment and restoring cleaved caspase-3 expression back to baseline. Neutrophil infiltration was blunted by 29% and 41% in the lungs and spleen, respectively. Cytokine expression was also reduced significantly, by 64% to 73% in plasma, 24% to 58% in the lungs, and 49% to 76% in the spleen. Finally, animals demonstrated a superior survival rate over 7 days after treatment with rhMFG-E8. CONCLUSION: The administration of rhMFG-E8 is a potent treatment in animals after hemorrhagic shock.


Shock | 2015

WNT Agonist Decreases Tissue Damage and Improves Renal Function After Ischemia-Reperfusion.

Michael Kuncewitch; Weng-Lang Yang; Lana Corbo; Adam Khader; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

ABSTRACT Renal ischemia-reperfusion (IR) injury (IRI) after shock states or transplantation causes tissue damage and delayed graft function, respectively. The Wnt/&bgr;-catenin signaling pathway plays a critical role in nephrogenesis. We therefore hypothesized that pharmacological activation of the Wnt/&bgr;-catenin signaling by the Wnt agonist, a synthetic pyrimidine, could protect kidneys from IRI. Adult male rats were subjected to bilateral clamping of the renal pedicles with microvascular clips for 60 min, followed by reperfusion. The Wnt agonist (5 mg/kg body weight) or vehicle (20% dimethyl sulfoxide in saline) was administered intravenously 1 h before ischemia. Blood and renal tissues were collected 24 h after IR for evaluation. Renal IR caused a significant reduction of &bgr;-catenin and its downstream target gene cyclin D1 by 65% and 39%, respectively, compared with the sham, whereas the Wnt agonist restored them to sham levels. The number and intensity of cells staining with the proliferation marker Ki67 in ischematized kidneys were enhanced by the Wnt agonist. The integrity of the renal histological architecture in the Wnt agonist group was better preserved than the vehicle group. The Wnt agonist significantly lowered serum levels of creatinine, aspartate aminotransferase, and lactate dehydrogenase and inhibited the production of interleukin 6 and interleukin 1&bgr; and myeloperoxidase activities. Lastly, the Wnt agonist reduced inducible nitric oxide synthase, nitrotyrosine proteins, and 4-hydroxynonenal in the kidneys by 60%, 47%, and 21%, respectively, compared with the vehicle. These results indicate that the Wnt agonist improves renal regeneration and function while attenuating inflammation and oxidative stress in the kidneys after IR. Thus, pharmacologic stimulation of the Wnt/&bgr;-catenin signaling provides a beneficial effect on the prevention of renal IRI.


Molecular Medicine | 2015

Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

Nikhil Mulchandani; Weng-Lang Yang; Mohammad Moshahid Khan; Fangming Zhang; Philippe Marambaud; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis.


International Journal of Molecular Medicine | 2016

A deficiency in cold-inducible RNA-binding protein accelerates the inflammation phase and improves wound healing.

Juan Pablo Idrovo; Asha Jacob; Weng Lang Yang; Zhimin Wang; Hao Ting Yen; Jeffrey Nicastro; Gene F. Coppa; Ping Wang

Chronic or non-healing wounds are a major concern in clinical practice and these wounds are mostly associated with diabetes, and venous and pressure ulcers. Wound healing is a complex process involving overlapping phases and the primary phase in this complex cascade is the inflammatory state. While inflammation is necessary for wound healing, a prolonged inflammatory phase leads to impaired healing. Cold-inducible RNA-binding protein (CIRP) belongs to a family of cold-shock proteins that are expressed in high levels under stress conditions. Recently, we demonstrated that a deficiency in CIRP led to decreased inflammation and mortality in an experimental model of hemorrhagic shock. Thus, we hypothesized that a deficiency in CIRP would accelerate the inflammatory phase and lead to an improvement in cutaneous wound healing. In this study, to examine this hypothesis, a full-thickness wound was created on the dorsum of wild-type (WT) and CIRP-/- mice. The wound size was measured every other day for 14 days. The wound area was significantly decreased in the CIRP-/- mice by day 9 and continued to decrease until day 14 compared to the WT mice. In a separate cohort, mice were sacrificed on days 3 and 7 after wounding and the skin tissues were harvested for histological analysis and RNA measurements. On day 3, the mRNA expression of tumor necrossis factor (TNF)-α in the skin tissues was increased by 16-fold in the WT mice, whereas these levels were increased by 65-fold in the CIRP-/- mice. Of note on day 7, while the levels of TNF-α remained high in the WT mice, these levels were significantly decreased in the CIRP-/- mice. The histological analysis of the wounded skin tissue indicated an improvement as early as day 3 in the CIRP-/- mice, whereas in the WT mice, infiltrated immune cells were still present on day 7. On day 7 in the CIRP-/- mice, Gr-1 expression was low and CD31 expression was high, whereas in the WT mice, Gr-1 expression was high and CD31 expression was low, indicating that the CIRP-/- mice have already moved into the angiogenesis and tissue formation phase, whereas the WT mice were still in the inflammatory state. These data collectively suggest that a deficiency in CIRP accelerates the wound healing process.

Collaboration


Dive into the Jeffrey Nicastro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Wang

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernesto P. Molmenti

North Shore University Hospital

View shared research outputs
Top Co-Authors

Avatar

Asha Jacob

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose M. Prince

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monowar Aziz

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kavin G. Shah

Long Island Jewish Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge