Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey O. Hanson is active.

Publication


Featured researches published by Jeffrey O. Hanson.


Science | 2015

Protected areas and global conservation of migratory birds

Claire A. Runge; James E. M. Watson; Stuart H. M. Butchart; Jeffrey O. Hanson; Hugh P. Possingham; Richard A. Fuller

Not enough protection for migrating birds Animals that migrate pass through a varying number of regions. Each of these regions contributes to a different component of their life cycles. Runge et al. looked at the degree of protection migratory birds receive, globally, across their breeding and wintering ranges. A remarkably low percentage of migratory birds receive adequate protection across their entire ranges. Given that over half the worlds migratory bird populations are declining, these results emphasize the urgency with which we must act to protect birds across their entire migratory cycle. Science, this issue p. 1255 Few migratory birds are protected across their entire range. Migratory species depend on a suite of interconnected sites. Threats to unprotected links in these chains of sites are driving rapid population declines of migrants around the world, yet the extent to which different parts of the annual cycle are protected remains unknown. We show that just 9% of 1451 migratory birds are adequately covered by protected areas across all stages of their annual cycle, in comparison with 45% of nonmigratory birds. This discrepancy is driven by protected area placement that does not cover the full annual cycle of migratory species, indicating that global efforts toward coordinated conservation planning for migrants are yet to bear fruit. Better-targeted investment and enhanced coordination among countries are needed to conserve migratory species throughout their migratory cycle.


Conservation Biology | 2015

Effects of threat management interactions on conservation priorities

Nancy A. Auerbach; Kerrie A. Wilson; Ayesha I. T. Tulloch; Jonathan R. Rhodes; Jeffrey O. Hanson; Hugh P. Possingham

Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.


Molecular Ecology | 2016

Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials

Rachael Y. Dudaniec; Jeffrey O. Hanson; Matthew Warren; Sarah Bell; Jonathan R. Rhodes

Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model‐based inference. We illustrate the approach empirically using co‐occurring, woodland‐preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground‐dwelling antechinus (Antechinus flavipes). First, we use maximum‐likelihood and a bootstrap procedure to identify the best‐supported isolation‐by‐resistance model out of 56 models defined by linear and non‐linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision‐making, where dealing with uncertainty is critical.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Environmental and geographic variables are effective surrogates for genetic variation in conservation planning

Jeffrey O. Hanson; Jonathan R. Rhodes; Cynthia Riginos; Richard A. Fuller

Significance To protect biodiversity for the long term, nature reserves and other protected areas need to represent a broad range of different genetic types. However, genetic data are expensive and time-consuming to obtain. Here we show that freely available environmental and geographic variables can be used as effective surrogates for genetic data in conservation planning. This means that conservation planners can, with some confidence, design protected area systems to represent intraspecific genetic diversity without investing in expensive programs to obtain and analyze genetic data. Protected areas buffer species from anthropogenic threats and provide places for the processes that generate and maintain biodiversity to continue. However, genetic variation, the raw material for evolution, is difficult to capture in conservation planning, not least because genetic data require considerable resources to obtain and analyze. Here we show that freely available environmental and geographic distance variables can be highly effective surrogates in conservation planning for representing adaptive and neutral intraspecific genetic variation. We obtained occurrence and genetic data from the IntraBioDiv project for 27 plant species collected over the European Alps using a gridded sampling scheme. For each species, we identified loci that were potentially under selection using outlier loci methods, and mapped their main gradients of adaptive and neutral genetic variation across the grid cells. We then used the cells as planning units to prioritize protected area acquisitions. First, we verified that the spatial patterns of environmental and geographic variation were correlated, respectively, with adaptive and neutral genetic variation. Second, we showed that these surrogates can predict the proportion of genetic variation secured in randomly generated solutions. Finally, we discovered that solutions based only on surrogate information secured substantial amounts of adaptive and neutral genetic variation. Our work paves the way for widespread integration of surrogates for genetic variation into conservation planning.


Emu | 2016

The distribution and protection of intertidal habitats in Australia

Kiran L. Dhanjal-Adams; Jeffrey O. Hanson; Nicholas J. Murray; Stuart R. Phinn; Vladimir R. Wingate; Karen Mustin; Jasmine R. Lee; James R. Allan; Jessica L. Cappadonna; Colin E. Studds; Robert S. Clemens; Chris Roelfsema; Richard A. Fuller

Abstract Shorebirds have declined severely across the East Asian—Australasian Flyway. Many species rely on intertidal habitats for foraging, yet the distribution and conservation status of these habitats across Australia remain poorly understood. Here, we utilised freely available satellite imagery to produce the first map of intertidal habitats across Australia. We estimated a minimum intertidal area of 9856 km2, with Queensland and Western Australia supporting the largest areas. Thirty-nine percent of intertidal habitats were protected in Australia, with some primarily within marine protected areas (e.g. Queensland) and others within terrestrial protected areas (e.g. Victoria). Three percent of all intertidal habitats were protected by both marine and terrestrial protected areas. To achieve conservation targets, protected area boundaries must align more accurately with intertidal habitats. Shorebirds use intertidal areas to forage and supratidal areas to roost, so a coordinated management approach is required to account for movement of birds between terrestrial and marine habitats. Ultimately, shorebird declines are occurring despite high levels of habitat protection in Australia. There is a need for a concerted effort both nationally and internationally to map and understand how intertidal habitats are changing, and how habitat conservation can be implemented more effectively.


Frontiers in Microbiology | 2015

Maturation of molybdoenzymes and its influence on the pathogenesis of non-typeable Haemophilus influenzae

Rabeb Dhouib; Dk Seti Maimonah Pg Othman; Ama-Tawiah Essilfie; Phil Hansbro; Jeffrey O. Hanson; Alastair G. McEwan; Ulrike Kappler

Mononuclear molybdenum enzymes of the dimethylsulfoxide (DMSO) reductase family occur exclusively in prokaryotes, and a loss of some these enzymes has been linked to a loss of bacterial virulence in several cases. The MobA protein catalyzes the final step in the synthesis of the molybdenum guanine dinucleotide (MGD) cofactor that is exclusive to enzymes of the DMSO reductase family. MobA has been proposed as a potential target for control of virulence since its inhibition would affect the activities of all molybdoenzymes dependent upon MGD. Here, we have studied the phenotype of a mobA mutant of the host-adapted human pathogen Haemophilus influenzae. H. influenzae causes and contributes to a variety of acute and chronic diseases of the respiratory tract, and several enzymes of the DMSO reductase family are conserved and highly expressed in this bacterium. The mobA mutation caused a significant decrease in the activities of all Mo-enzymes present, and also resulted in a small defect in anaerobic growth. However, we did not detect a defect in in vitro biofilm formation nor in invasion and adherence to human epithelial cells in tissue culture compared to the wild-type. In a murine in vivo model, the mobA mutant showed only a mild attenuation compared to the wild-type. In summary, our data show that MobA is essential for the activities of molybdenum enzymes, but does not appear to affect the fitness of H. influenzae. These results suggest that MobA is unlikely to be a useful target for antimicrobials, at least for the purpose of treating H. influenzae infections.


Supplement to: Dhanjal-Adams, KL et al. (2016): The distribution and protection of intertidal habitats in Australia. Emu - Austral Ornithology, 116(2), 208, https://doi.org/10.1071/MU15046 | 2016

Mapped distribution of intertidal habitats in Australia between 1999 and 2014, link to data in ArcGIS format (29 MB)

Kiran L. Dhanjal-Adams; Jeffrey O. Hanson; Nicholas J. Murray; Stuart R. Phinn; Vladimir R. Wingate; Karen Mustin; Jasmine R. Lee; James R. Allan; Jessica L. Cappadonna; Colin E. Studds; Robert S. Clemens; Christiaan M Roelfsema; Richard A. Fuller

Mapping of distribution of intertidal habitats in Australia, and identification of percentage of marine and terrestrial protected areas.


Conservation Biology | 2015

Effects of threat management interactions on conservation priorities: Accounting for Management Interactions

Nancy A. Auerbach; Kerrie A. Wilson; Ayesha I. T. Tulloch; Jonathan R. Rhodes; Jeffrey O. Hanson; Hugh P. Possingham

Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.


Conservation Biology | 2015

Accounting for interactions in threat management alters conservation priorities

Nancy A. Auerbach; Kerrie A. Wilson; Ayesha I. T. Tulloch; Jonathan R. Rhodes; Jeffrey O. Hanson; Hugh P. Possingham

Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.


Austral Ecology | 2015

Feeding across the food web: The interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus)

Jeffrey O. Hanson; Steven W. Salisbury; Hamish A. Campbell; Ross G. Dwyer; Timothy D. Jardine; Craig E. Franklin

Collaboration


Dive into the Jeffrey O. Hanson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Allan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jasmine R. Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jessica L. Cappadonna

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge