Jeffrey P. Townsend
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey P. Townsend.
Nature Reviews Microbiology | 2005
J. Peter Gogarten; Jeffrey P. Townsend
To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.
Nature | 2015
Richard O. Prum; Jacob S. Berv; Alex Dornburg; Daniel J. Field; Jeffrey P. Townsend; Emily Moriarty Lemmon; Alan R. Lemmon
Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves—a clade that encompasses nearly all living bird species—remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 × 107 bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades—Columbea and Passerea—were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous–Palaeogene (K–Pg) mass extinction.
Systematic Biology | 2009
Conrad L. Schoch; Gi Ho Sung; Francesc López-Giráldez; Jeffrey P. Townsend; Jolanta Miadlikowska; Valérie Hofstetter; Barbara Robbertse; P. Brandon Matheny; Frank Kauff; Zheng Wang; Cécile Gueidan; Rachael M. Andrie; Kristin M. Trippe; Linda M. Ciufetti; Anja Amtoft Wynns; Emily Fraker; Brendan P. Hodkinson; Gregory Bonito; Johannes Z. Groenewald; Mahdi Arzanlou; G. Sybren de Hoog; Pedro W. Crous; David Hewitt; Donald H. Pfister; Kristin R. Peterson; Marieka Gryzenhout; Michael J. Wingfield; André Aptroot; Sung Oui Suh; Meredith Blackwell
We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.
Philosophical Transactions of the Royal Society B | 2006
John W. Taylor; Elizabeth Turner; Jeffrey P. Townsend; Jeremy R. Dettman; David J. Jacobson
The claim that eukaryotic micro-organisms have global geographic ranges, constituting a significant departure from the situation with macro-organisms, has been supported by studies of morphological species from protistan kingdoms. Here, we examine this claim by reviewing examples from another kingdom of eukaryotic microbes, the Fungi. We show that inferred geographic range of a fungal species depends upon the method of species recognition. While some fungal species defined by morphology show global geographic ranges, when fungal species are defined by phylogenetic species recognition they are typically shown to harbour several to many endemic species. We advance two non-exclusive reasons to explain the perceived difference between the size of geographic ranges of microscopic and macroscopic eukaryotic species when morphological methods of species recognition are used. These reasons are that microbial organisms generally have fewer morphological characters, and that the rate of morphological change will be slower for organisms with less elaborate development and fewer cells. Both of these reasons result in fewer discriminatory morphological differences between recently diverged lineages. The rate of genetic change, moreover, is similar for both large and small organisms, which helps to explain why phylogenetic species of large and small organisms show a more similar distribution of geographic ranges. As a consequence of the different rates in fungi of genetic and morphological changes, genetic isolation precedes a recognizable morphological change. The final step in speciation, reproductive isolation, also follows genetic isolation and may precede morphological change.
Systematic Biology | 2007
Jeffrey P. Townsend
The resolution of four controversial topics in phylogenetic experimental design hinges upon the informativeness of characters about the historical relationships among taxa. These controversies regard the power of different classes of phylogenetic character, the relative utility of increased taxonomic versus character sampling, the differentiation between lack of phylogenetic signal and a historical rapid radiation, and the design of taxonomically broad phylogenetic studies optimized by taxonomically sparse genome-scale data. Quantification of the informativeness of characters for resolution of phylogenetic hypotheses during specified historical epochs is key to the resolution of these controversies. Here, such a measure of phylogenetic informativeness is formulated. The optimal rate of evolution of a character to resolve a dated four-taxon polytomy is derived. By scaling the asymptotic informativeness of a character evolving at a nonoptimal rate by the derived asymptotic optimum, and by normalizing so that net phylogenetic informativeness is equivalent for all rates when integrated across all of history, an informativeness profile across history is derived. Calculation of the informativeness per base pair allows estimation of the cost-effectiveness of character sampling. Calculation of the informativeness per million years allows comparison across historical radiations of the utility of a gene for the inference of rapid adaptive radiation. The theory is applied to profile the phylogenetic informativeness of the genes BRCA1, RAG1, GHR, and c-myc from a muroid rodent sequence data set. Bounded integrations of the phylogenetic profile of these genes over four epochs comprising the diversifications of the muroid rodents, the mammals, the lobe-limbed vertebrates, and the early metazoans demonstrate the differential power of these genes to resolve the branching order among ancestral lineages. This measure of phylogenetic informativeness yields a new kind of information for evaluation of phylogenetic experiments. It conveys the utility of the addition of characters a phylogenetic study and it provides a basis for deciding whether appropriate phylogenetic power has been applied to a polytomy that is proposed to be a rapid radiation. Moreover, it provides a quantitative measure of the capacity of a gene to resolve soft polytomies.
Advances in Genetics | 2007
Jay C. Dunlap; Katherine A. Borkovich; Matthew R. Henn; Gloria E. Turner; Matthew S. Sachs; N. Louise Glass; Kevin McCluskey; Michael Plamann; James E. Galagan; Bruce W. Birren; Richard L. Weiss; Jeffrey P. Townsend; Jennifer J. Loros; Mary Anne Nelson; Randy Lambreghts; Hildur V. Colot; Gyungsoon Park; Patrick D. Collopy; Carol S. Ringelberg; Christopher M. Crew; Liubov Litvinkova; Dave DeCaprio; Heather M. Hood; Susan Curilla; Mi Shi; Matthew Crawford; Michael Koerhsen; Phil Montgomery; Lisa Larson; Matthew Pearson
A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.
Science | 2014
Abhishek Pandey; Katherine E. Atkins; Jan Medlock; Natasha Wenzel; Jeffrey P. Townsend; James E. Childs; Tolbert Nyenswah; Martial L. Ndeffo-Mbah; Alison P. Galvani
The ongoing Ebola outbreak poses an alarming risk to the countries of West Africa and beyond. To assess the effectiveness of containment strategies, we developed a stochastic model of Ebola transmission between and within the general community, hospitals, and funerals, calibrated to incidence data from Liberia. We find that a combined approach of case isolation, contact-tracing with quarantine, and sanitary funeral practices must be implemented with utmost urgency in order to reverse the growth of the outbreak. As of 19 September, under status quo, our model predicts that the epidemic will continue to spread, generating a predicted 224 (134 to 358) daily cases by 1 December, 280 (184 to 441) by 15 December, and 348 (249 to 545) by 30 December. A combination of hygienic practices could feasibly check Ebola within 6 months. Recharging Ebola mitigation measures Effective drugs and vaccines for Ebola virus are not available, so what can be done? Pandey et al. used a mathematical model to analyze transmission in different scenarios: the community, hospitals, and at funerals. Achieving full compliance with any single control measure, such as case isolation, is impossible under prevailing conditions. However, with a minimum of 60% compliance, a combination of case isolation, hygienic burial, and contact tracing could reduce daily case numbers to single figures in 5 to 6 months. Success will also require persistence and sensitivity to local customs. Science, this issue p. 991
Mycologia | 2013
Manfred Binder; Alfredo Justo; Robert Riley; Asaf Salamov; Francesc López-Giráldez; Elisabet Sjökvist; Alex Copeland; Brian Foster; Hui Sun; Ellen Larsson; Karl-Henrik Larsson; Jeffrey P. Townsend; Igor V. Grigoriev; David S. Hibbett
We present a phylogenetic and phylogenomic overview of the Polyporales. The newly sequenced genomes of Bjerkandera adusta, Ganoderma sp., and Phlebia brevispora are introduced and an overview of 10 currently available Polyporales genomes is provided. The new genomes are 39 500 000–49 900 00 bp and encode for 12 910–16 170 genes. We searched available genomes for single-copy genes and performed phylogenetic informativeness analyses to evaluate their potential for phylogenetic systematics of the Polyporales. Phylogenomic datasets (25, 71, 356 genes) were assembled for the 10 Polyporales species with genome data and compared with the most comprehensive dataset of Polyporales to date (six-gene dataset for 373 taxa, including taxa with missing data). Maximum likelihood and Bayesian phylogenetic analyses of genomic datasets yielded identical topologies, and the corresponding clades also were recovered in the 373-taxa dataset although with different support values in some datasets. Three previously recognized lineages of Polyporales, antrodia, core polyporoid and phlebioid clades, are supported in most datasets, while the status of the residual polyporoid clade remains uncertain and certain taxa (e.g. Gelatoporia, Grifola, Tyromyces) apparently do not belong to any of the major lineages of Polyporales. The most promising candidate single-copy genes are presented, and nodes in the Polyporales phylogeny critical for the suprageneric taxonomy of the order are identified and discussed.
BMC Evolutionary Biology | 2011
Francesc López-Giráldez; Jeffrey P. Townsend
BackgroundThe rapid increase in number of sequenced genomes for species across of the tree of life is revealing a diverse suite of orthologous genes that could potentially be employed to inform molecular phylogenetic studies that encompass broader taxonomic sampling. Optimal usage of this diversity of loci requires user-friendly tools to facilitate widespread cost-effective locus prioritization for phylogenetic sampling. The Townsend (2007) phylogenetic informativeness provides a unique empirical metric for guiding marker selection. However, no software or automated methodology to evaluate sequence alignments and estimate the phylogenetic informativeness metric has been available.ResultsHere, we present PhyDesign, a platform-independent online application that implements the Townsend (2007) phylogenetic informativeness analysis, providing a quantitative prediction of the utility of loci to solve specific phylogenetic questions. An easy-to-use interface facilitates uploading of alignments and ultrametric trees to calculate and depict profiles of informativeness over specified time ranges, and provides rankings of locus prioritization for epochs of interest.ConclusionsBy providing these profiles, PhyDesign facilitates locus prioritization increasing the efficiency of sequencing for phylogenetic purposes compared to traditional studies with more laborious and low capacity screening methods, as well as increasing the accuracy of phylogenetic studies. Together with a manual and sample files, the application is freely accessible at http://phydesign.townsend.yale.edu.
Nucleic Acids Research | 2005
Takao Kasuga; Jeffrey P. Townsend; Chaoguang Tian; Luz B. Gilbert; Gertrud Mannhaupt; John W. Taylor; N. Louise Glass
To test the inferences of spotted microarray technology against a biochemically well-studied process, we performed transcriptional profiling of conidial germination in the filamentous fungus, Neurospora crassa. We first constructed a 70 base oligomer microarray that assays 3366 predicted genes. To estimate the relative gene expression levels and changes in gene expression during conidial germination, we analyzed a circuit design of competitive hybridizations throughout a time course using a Bayesian analysis of gene expression level. Remarkable consistency of mRNA profiles with previously published northern data was observed. Genes were hierarchically clustered into groups with respect to their expression profiles over the time course of conidial germination. A functional classification database was employed to characterize the global picture of gene expression. Consensus motif searches identified a putative regulatory component associated with genes involved in ribosomal biogenesis. Our transcriptional profiling data correlate well with biochemical and physiological processes associated with conidial germination and will facilitate functional predictions of novel genes in N.crassa and other filamentous ascomycete species. Furthermore, our dataset on conidial germination allowed comparisons to transcriptional mechanisms associated with germination processes of diverse propagules, such as teliospores of the phytopathogenic fungus Ustilago maydis and spores of the social amoeba Dictyostelium discoideum.