Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Garnas is active.

Publication


Featured researches published by Jeffrey R. Garnas.


PLOS ONE | 2013

Ion Torrent PGM as Tool for Fungal Community Analysis: A Case Study of Endophytes in Eucalyptus grandis Reveals High Taxonomic Diversity

Martin Kemler; Jeffrey R. Garnas; Michael J. Wingfield; Marieka Gryzenhout; Kerry-Anne Pillay; Bernard Slippers

The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1) nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM). We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters). Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths.


International Journal of Pest Management | 2012

Biological control of forest plantation pests in an interconnected world requires greater international focus

Jeffrey R. Garnas; Brett Phillip Hurley; Bernard Slippers; Michael J. Wingfield

The worldwide homogenization of genetic resources used in plantation forestry (primarily Pinus, Eucalypus, Populus and Acacia spp.) together with accelerating rates of human-aided dispersal of exotic pests, is resulting in plantation pests becoming broadly distributed extremely quickly, sometimes reaching a global distribution within a decade. This unprecedented rate of establishment and spread means that the risk associated with new and emerging pests is shared globally. Biological control represents a major component of the strategy to mitigate such risk, but the current efforts and scope for developing such controls are woefully inadequate for dealing with the increasing rates of pest spread. Given the global nature of the problem, biological control would benefit enormously from an international, collaborative focus. Though inherent difficulties and potential pitfalls exist, opportunities for cost-sharing, growth and maintenance of resources and capacity, and more comprehensive research programmes are critical to the long-term success of biological control. Governments and industries will need to increase their strategic investment in structures specifically designed to promote such focus if they are to successfully protect their forest resources.


Biological Invasions | 2016

Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years

Alain Roques; Marie-Anne Auger-Rozenberg; Tim M. Blackburn; Jeffrey R. Garnas; Petr Pyšek; Wolfgang Rabitsch; Michael J. Wingfield; Andrew M. Liebhold; Richard P. Duncan

Globalization is triggering an increase in the establishment of alien insects in Europe, with several species having substantial ecological and economic impacts. We investigated long-term changes in rates of species spread following establishment. We used the total area of countries invaded by 1171 insect species for which the date of first record in Europe is known, to estimate their current range radius (calculated as [invaded area]0.5/π). We estimated initial rates of radial spread and compared them among different groups of insects for all years (1800–2014) and for a subset of more recent decades (1950–2014). Accidentally introduced species spread faster than intentionally introduced species. Considering the whole period 1800–2014, spread patterns also differ between feeding guilds, with decreasing spread rates over residence time in herbivores but not in detritivores or parasitic species. These decreases for herbivorous species appeared mainly in those associated with herbaceous plants and crops rather than woody plants. Initial spread rate was significantly greater for species detected after 1990, roughly 3–4 times higher than for species that arrived earlier. We hypothesize that the political changes in Europe following the collapse of the Iron Curtain in 1989, and the further dismantling of customs checkpoints within an enlarged European Union (EU) have facilitated the faster spread of alien insect species. Also, the number of species first recorded in the Eastern Bloc of the politically-divided Europe before 1989 was lower than for the rest of Europe. A detailed analysis of six recent invaders indicated a dominant role of long-distance translocations related to human activities, especially with the plant trade, in determining rates of spread.


Biological Invasions | 2016

Defining invasiveness and invasibility in ecological networks

Cang Hui; Pietro Landi; Henintsoa O. Minoarivelo; Jeffrey R. Garnas; Helen E. Roy

The success of a biological invasion is context dependent, and yet two key concepts—the invasiveness of species and the invasibility of recipient ecosystems—are often defined and considered separately. We propose a framework that can elucidate the complex relationship between invasibility and invasiveness. It is based on trait-mediated interactions between species and depicts the response of an ecological network to the intrusion of an alien species, drawing on the concept of community saturation. Here, invasiveness of an introduced species with a particular trait is measured by its per capita population growth rate when the initial propagule pressure of the introduced species is very low. The invasibility of the recipient habitat or ecosystem is dependent on the structure of the resident ecological network and is defined as the total width of an opportunity niche in the trait space susceptible to invasion. Invasibility is thus a measure of network instability. We also correlate invasibility with the asymptotic stability of resident ecological network, measured by the leading eigenvalue of the interaction matrix that depicts trait-based interaction intensity multiplied by encounter rate (a pairwise product of propagule pressure of all members in a community). We further examine the relationship between invasibility and network architecture, including network connectance, nestedness and modularity. We exemplify this framework with a trait-based assembly model under perturbations in ways to emulate fluctuating resources and random trait composition in ecological networks. The maximum invasiveness of a potential invader (greatest intrinsic population growth rate) was found to be positively correlated with invasibility of the recipient ecological network. Additionally, ecosystems with high network modularity and high ecological stability tend to exhibit high invasibility. Where quantitative data are lacking we propose using a qualitative interaction matrix of the ecological network perceived by a potential invader so that the structural network stability and invasibility can be estimated from the literature or from expert opinion. This approach links network structure, invasiveness and invasibility in the context of trait-mediated interactions, such as the invasion of insects into mutualistic and antagonistic networks.


Biological Invasions | 2016

Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence

Michael J. Wingfield; Jeffrey R. Garnas; Ann E. Hajek; Brett Phillip Hurley; Z. Wilhelm de Beer; Stephen J. Taerum

Some of the most devastating diseases of trees involve associations between forest insects and microorganisms. Although a small number of native insect-microorganism symbioses can cause tree mortality, the majority of associations with tree health implications involve one or more exotic organisms. Here, we divide damaging symbioses between forest insects and microorganisms into four categories based on the native/exotic status of the species involved: (1) insect and microorganism are native; (2) insect is native, microorganism is exotic; (3) insect is exotic, microorganism is native; and (4) insect and microorganism are both exotic. For each category, we describe several well-researched examples of forest insect symbioses and discuss some of the consequences of the types of interactions within each category. We then discuss priorities for research on forest insect symbioses that could help to further elucidate patterns in the complexity of such interactions in the context of invasion biology. We argue that a nuanced understanding of insect-pathogen relationships is lacking, even for the few well-studied examples. Because novel associations between insects, microorganisms, and trees are increasing with globalization, such symbioses and their potential to negatively impact forest ecosystems demand focused research in the future.


Biological Invasions | 2016

Increasing numbers and intercontinental spread of invasive insects on eucalypts

Brett Phillip Hurley; Jeffrey R. Garnas; Michael J. Wingfield; Manuela Branco; Bernard Slippers

Abstract Native to Australasia, Eucalyptus (sensu lato) is one of the most planted genera of trees in the world. However, the sustainability of Eucalyptus species as plantation trees in non-native areas is increasingly threatened by the introduction and spread of Eucalyptus-feeding insects from Australia. We examine patterns and potential trends with respect to the global spread of Eucalyptus-feeding insects. Likely pathways of introduction and drivers of the rapid distribution of these insects, as well as management options are considered. The rate of introductions is shown to have increased nearly fivefold since the 1980s. As a result, the number of non-native pests of eucalypts outside of Australia has doubled in less than three decades. Furthermore, the rate of secondary spread among continents has also increased. Surprisingly, we found no association between area planted and the number of pests or new introductions. Only a small number of countries have been the points of first detection outside the native range; these countries have acted as bridgeheads to other regions. Quarantine regulations aimed at reducing the spread of invasive organisms appear to be ineffective at a global scale, and pathways allowing these invasions to occur are poorly understood or unknown. An expanded suite of management options are needed to provide resilience against the rapid accrual and homogenization of eucalypt pests, thereby ensuring the sustainability of eucalypt forestry worldwide.


Biological Invasions | 2016

Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences.

Jeffrey R. Garnas; Marie-Anne Auger-Rozenberg; Alain Roques; Cleo Bertelsmeier; Michael J. Wingfield; Davina L. Saccaggi; Helen E. Roy; Bernard Slippers

Abstract The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.


Biology Letters | 2013

Lack of fidelity revealed in an insect–fungal mutualism after invasion

Amy L. Wooding; Michael J. Wingfield; Brett Phillip Hurley; Jeffrey R. Garnas; Peter de Groot; Bernard Slippers

Symbiont fidelity is an important mechanism in the evolution and stability of mutualisms. Strict fidelity has been assumed for the obligate mutualism between Sirex woodwasps and their mutualistic Amylostereum fungi. This assumption has been challenged in North America where the European woodwasp, Sirex noctilio, and its fungal mutualist, Amylostereum areolatum, have recently been introduced. We investigate the specificity of the mutualism between Sirex and Amylostereum species in Canada, where S. noctilio co-infests Pinus with native Sirex nigricornis and its mutualist, Amylostereum chailletii. Using phylogenetic and culture methods, we show that extensive, reciprocal exchange of fungal species and strains is occurring, with 75.3 per cent of S. nigricornis carrying A. areolatum and 3.5 per cent of S. noctilio carrying A. chailletii. These findings show that the apparent specificity of the mutualism between Sirex spp. and their associated Amylostereum spp. is not the result of specific biological mechanisms that maintain symbiont fidelity. Rather, partner switching may be common when shifting geographical distributions driven by ecological or anthropogenic forces bring host and mutualist pairs into sympatry. Such novel associations have potentially profound consequences for fitness and virulence. Symbiont sharing, if it occurs commonly, may represent an important but overlooked mechanism of community change linked to biological invasions.


Journal of Economic Entomology | 2013

Biology and rearing of Cleruchoides noackae (Hymenoptera : Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera : Thaumastocoridae)

Eston Mutitu; Jeffrey R. Garnas; Brett Phillip Hurley; Michael J. Wingfield; Marlene Harney; Samantha J. Bush; Bernard Slippers

ABSTRACT Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) is a solitary egg parasitoid of Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). The parasitoid was first described in 2009 and its biology and rearing are poorly understood. A key obstacle to the use of C. noackae as a biological control agent has been the ability to consistently rear it under quarantine conditions. This study reports on a series of experiments conducted in quarantine to rear C. noackae and to examine the effects of diet on longevity, per capita reproduction, and progeny sex ratio, as well as to determine development time, and preference and suitability of host eggs of different ages. When supplemented with honey solution, the longevity of C. noackae females increased significantly by 2.4 d and that of males by 1.7 d, relative to the unfed adults. Mean per capita reproduction for the honey-fed wasps was 7.7 offspring per female, with progeny sex ratio slightly skewed toward males. Mean percentage parasitism was 32.2%. C. noackae was capable of parasitizing and completing development from oviposition to adult eclosion within 15.7 d in host eggs between 0 and 5 d old. The ability of C. noackae to parasitize a wide range of host egg ages increases the period of vulnerability of T. peregrinus to attack, increasing its potential efficacy as a biological control agent. The methods and results reported here represent a crucial step in the ongoing efforts to develop this potential biological control system.


Agricultural and Forest Entomology | 2015

Assessing trap and lure effectiveness for the monitoring of Sirex noctilio

Brett Phillip Hurley; Jeffrey R. Garnas; Miriam F. Cooperband

Lure‐baited traps are an important tool for monitoring the spread and establishment of the Sirex woodwasp Sirex noctilio. The utility of these traps, however, is limited in areas with low wasp populations as a result of the reliance on a plant volatile (kairomone) lure in the absence of an identified pheromone. Knowledge of the optimal trap type and deployment strategy is also lacking. We tested the effectiveness of a putative pheromone in baited traps, by means of a series of field trials in South Africa, over a 3‐year period. We also examined the influence of lure type, trap type and trap height on capture success. The pheromone was found to be ineffective as an attractant under South African field conditions for both male and female wasps. Lure type, trap type and trap height were found to have little to no effect on female wasp catch. Given the moderately strong responses to the blend under wind tunnel and laboratory conditions, we suggest possible aspects of the biology and life history of S. noctilio that may influence lure effectiveness. The traditional black intercept panel traps with kairomone lure remains the best trap for S. noctilio, at least where populations are high.

Collaboration


Dive into the Jeffrey R. Garnas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Liebhold

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Houston

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge