Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Gour is active.

Publication


Featured researches published by Jeffrey R. Gour.


Journal of Chemical Physics | 2005

Extension of renormalized coupled-cluster methods including triple excitations to excited electronic states of open-shell molecules

Marta Włoch; Jeffrey R. Gour; Karol Kowalski; Piotr Piecuch

The general-purpose open-shell implementation of the completely renormalized equation-of-motion coupled-cluster approach with singles, doubles, and noniterative triples [CR-EOMCCSD(T)] is reported. Benchmark calculations for the low-lying doublet and quartet states of the CH radical show that the CR-EOMCCSD(T) method is capable of providing a highly accurate description of ground and excited states of open-shell molecules. This includes states with strong double excitation character, for which the conventional EOMCCSD approach fails.


Journal of Physical Chemistry A | 2009

Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone

Yan Zhao; Oksana Tishchenko; Jeffrey R. Gour; Wei Li; Jesse J. Lutz; Piotr Piecuch; Donald G. Truhlar

The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals gives accurate forward barrier heights; however, it significantly underestimates reaction energies.


Molecular Physics | 2006

Two new classes of non-iterative coupled-cluster methods derived from the method of moments of coupled-cluster equations

Marta W. Łoch; Maricris D. Lodriguito; Piotr Piecuch; Jeffrey R. Gour

Two recently proposed classes of non-iterative coupled-cluster (CC) methods derived from the method of moments of CC equations (MMCC) are discussed. The first approach, termed MMCC/PT, combines the MMCC formalism with a simplified form of multi-reference perturbation theory. The second approach, which leads to completely renormalized (CR) CC methods employing the left eigenstates of the similarity-transformed Hamiltonian, such as CR-CCSD , exploits the recently developed biorthogonal formulation of the MMCC theory. Both approaches are capable of improving the results of standard CC and equation-of-motion CC (EOMCC) calculations for ground-state potential energy surfaces along bond breaking coordinates and excited states dominated by two-electron transitions with computer costs similar to those characterizing the popular (and failing) CCSD(T) approximation. The performance of the basic MMCC/PT and CR-CCSD approximations, in which non-iterative corrections due to triple excitations are added to the ground-state energies obtained with the CC singles and doubles (CCSD) approach, is illustrated by the results of calculations for the HF, F2 and H2O molecules. The improvements offered by these approaches in the excited-state calculations are illustrated by the results for the vertical excitation energies of the CH+ ion.


Journal of Chemical Physics | 2006

Efficient formulation and computer implementation of the active-space electron-attached and ionized equation-of-motion coupled-cluster methods.

Jeffrey R. Gour; Piotr Piecuch

The efficient, general-purpose implementations of the active-space electron-attached (EA) and ionized (IP) equation-of-motion coupled-cluster (EOMCC) methods including up to 3p-2h and 3h-2p excitations, called EA-EOMCCSDt and IP-EOMCCSDt, respectively, are discussed. The details of the algorithm that enables one to achieve a high degree of code vectorization for the active-space methods and the factorized forms of the EA- and IP-EOMCCSDt equations that maximize the benefits of using active orbitals in the process of selecting the dominant 3p-2h and 3h-2p excitations are presented. The results of benchmark calculations for the low-lying doublet and quartet states of the CH and SH radicals reveal that the active-space EA-EOMCCSDt and IP-EOMCCSDt methods are capable of producing results for the electronic excitations in open-shell systems that match the high accuracy of EA- and IP-EOMCC calculations with a full treatment of 3p-2h and 3h-2p excitations, even when the excited states of interest display a manifestly multideterminantal nature, with the costs that can be on the same order of those characterizing the basic EOMCC singles and doubles approach.


Journal of Chemical Physics | 2005

Active-space equation-of-motion coupled-cluster methods for excited states of radicals and other open-shell systems: EA-EOMCCSDt and IP-EOMCCSDt

Jeffrey R. Gour; Piotr Piecuch; Marta Włoch

The previously developed active-space coupled-cluster (CC) and equation-of-motion (EOM) CC methods are extended to radicals and other open-shell systems by combining them with the electron attached (EA) and ionized (IP) EOMCC approaches. As illustrated by the calculations for the CH and OH radicals, the resulting EA-EOMCCSDt and IP-EOMCCSDt theories are capable of providing a highly accurate description of the electronic spectra of radical systems, including excited states displaying a manifestly multideterminantal nature, with the low costs that are not much greater that those characterizing the standard EOMCC singles and doubles method.


Journal of Physical Chemistry A | 2008

Stereoelectronic Effects on Molecular Geometries and State-Energy Splittings of Ligated Monocopper Dioxygen Complexes

Christopher J. Cramer; Jeffrey R. Gour; Armagan Kinal; Marta Włoch; Piotr Piecuch; and Abdul Rehaman Moughal Shahi; Laura Gagliardi

The relative energies of side-on versus end-on binding of molecular oxygen to a supported Cu(I) species, and the singlet versus triplet nature of the ground electronic state, are sensitive to the nature of the supporting ligands and, in particular, depend upon their geometric arrangement relative to the O2 binding site. Highly correlated ab initio and density functional theory electronic structure calculations demonstrate that optimal overlap (and oxidative charge transfer) occurs for the side-on geometry, and this is promoted by ligands that raise the energy, thereby enhancing resonance, of the filled Cu dxz orbital that hybridizes with the in-plane pi* orbital of O2. Conversely, ligands that raise the energy of the filled Cu dz2 orbital foster a preference for end-on binding as this is the only mode that permits good overlap with the in-plane O2 pi*. Because the overlap of Cu dz2 with O2 pi* is reduced as compared to the overlap of Cu dxz with the same O2 orbital, the resonance is also reduced, leading to generally more stable triplet states relative to singlets in the end-on geometry as compared to the side-on geometry, where singlet ground states become more easily accessible once ligands are stronger donors. Biradical Cu(II)-O2 superoxide character in the electronic structure of the supported complexes leads to significant challenges for accurate quantum chemical calculations that are best addressed by exploiting the spin-purified M06L local density functional, single-reference completely renormalized coupled-cluster theory, or multireference second-order perturbation theory, all of which provide predictions that are qualitatively and quantitatively consistent with one another.


Journal of Chemical Physics | 2007

Active-space symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster methods for high accuracy calculations of potential energy surfaces of radicals

Yuhki Ohtsuka; Piotr Piecuch; Jeffrey R. Gour; Masahiro Ehara; Hiroshi Nakatsuji

The electron-attached (EA) and ionized (IP) symmetry-adapted-cluster configuration-interaction (SAC-CI) methods and their equation-of-motion coupled-cluster (EOMCC) analogs provide an elegant framework for studying open-shell systems. As shown in this study, these schemes require the presence of higher-order excitations, such as the four-particle-three-hole (4p-3h) or four-hole-three-particle (4h-3p) terms, in the electron attaching or ionizing operator R in order to produce accurate ground- and excited-state potential energy surfaces of radicals along bond breaking coordinates. The full inclusion of the 4p-3h/4h-3p excitations in the EA/IP SAC-CI and EOMCC methods leads to schemes which are far too expensive for calculations involving larger radicals and realistic basis sets. In order to reduce the large costs of such schemes without sacrificing accuracy, the active-space EA/IP EOMCC methodology [J. R. Gour et al., J. Chem. Phys. 123, 134113 (2005)] is extended to the EA/IP SAC-CI approaches with 4p-3h/4h-3p excitations. The resulting methods, which use a physically motivated set of active orbitals to pick out the most important 3p-2h/3h-2p and 4p-3h/4h-3p excitations, represent practical computational approaches for high-accuracy calculations of potential energy surfaces of radicals. To illustrate the potential offered by the active-space EA/IP SAC-CI approaches with up to 4p-3h/4h-3p excitations, the results of benchmark calculations for the potential energy surfaces of the low-lying doublet states of CH and OH are presented and compared with other SAC-CI and EOMCC methods, and full CI results.


Physical Review Letters | 2005

Ab-initio coupled-cluster study of 16O.

Marta Włoch; D. J. Dean; Jeffrey R. Gour; M. Hjorth-Jensen; Karol Kowalski; T. Papenbrock; Piotr Piecuch

We report converged results for the ground and excited states and matter density of 16O using realistic two-body nucleon-nucleon interactions and coupled-cluster methods and algorithms developed in quantum chemistry. Most of the binding is obtained with the coupled-cluster singles and doubles approach. Additional binding due to three-body clusters (triples) is minimal. The coupled-cluster method with singles and doubles provides a good description of the matter density, charge radius, charge form factor, and excited states of a one-particle, one-hole nature, but it cannot describe the first-excited 0(+) state. Incorporation of triples has no effect on the latter finding.


Journal of Physical Chemistry A | 2008

Breaking Bonds of Open-Shell Species with the Restricted Open-Shell Size Extensive Left Eigenstate Completely Renormalized Coupled-Cluster Method

Yingbin Ge; Mark S. Gordon; Piotr Piecuch; Marta Włoch; Jeffrey R. Gour

The recently developed restricted open-shell, size extensive, left eigenstate, completely renormalized (CR), coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as ROCCL, is compared with the unrestricted CCSD(T) [UCCSD(T)] and multireference second-order perturbation theory (MRMP2) methods to assess the accuracy of the calculated potential energy surfaces (PESs) of eight single bond-breaking reactions of open-shell species that consist of C, H, Si, and Cl; these types of reactions are interesting because they account for part of the gas-phase chemistry in the silicon carbide chemical vapor deposition. The full configuration interaction (FCI) and multireference configuration interaction with Davidson quadruples correction [MRCI(Q)] methods are used as benchmark methods to evaluate the accuracy of the ROCCL, UCCSD(T), and MRMP2 PESs. The ROCCL PESs are found to be in reasonable agreement with the corresponding FCI or MRCI(Q) PESs in the entire region R = 1-3Re for all of the studied bond-breaking reactions. The ROCCL PESs have smaller nonparallelity error (NPE) than the UCCSD(T) ones and are comparable to those obtained with MRMP2. Both the ROCCL and UCCSD(T) PESs have significantly smaller reaction energy errors (REE) than the MRMP2 ones. Finally, an efficient strategy is proposed to estimate the ROCCL/cc-pVTZ PESs using an additivity approximation for basis set effects and correlation corrections.


Journal of Chemical Physics | 2008

A comparative assessment of the perturbative and renormalized coupled cluster theories with a noniterative treatment of triple excitations for thermochemical kinetics, including a study of basis set and core correlation effects.

Jingjing Zheng; Jeffrey R. Gour; Jesse J. Lutz; Marta Włoch; Piotr Piecuch; Donald G. Truhlar

The CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.

Collaboration


Dive into the Jeffrey R. Gour's collaboration.

Top Co-Authors

Avatar

Piotr Piecuch

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Marta Włoch

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

D. J. Dean

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesse J. Lutz

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Karol Kowalski

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. A. Brown

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge