Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Gulcher is active.

Publication


Featured researches published by Jeffrey R. Gulcher.


Nature Genetics | 2006

Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes

Struan F. A. Grant; Gudmar Thorleifsson; Inga Reynisdottir; Rafil Benediktsson; Andrei Manolescu; Jesus Sainz; Agnar Helgason; Hreinn Stefansson; Valur Emilsson; Anna Helgadottir; Unnur Styrkarsdottir; Kristinn P. Magnusson; G. Bragi Walters; Ebba Palsdottir; Thorbjorg Jonsdottir; Thorunn Gudmundsdottir; Arnaldur Gylfason; Jona Saemundsdottir; Robert L. Wilensky; Muredach P. Reilly; Daniel J. Rader; Yu Z. Bagger; Claus Christiansen; Vilmundur Gudnason; Gunnar Sigurdsson; Unnur Thorsteinsdottir; Jeffrey R. Gulcher; Augustine Kong; Kari Stefansson

We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7–like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 × 10−9). This was replicated in a Danish cohort (P = 4.8 × 10−3) and in a US cohort (P = 3.3 × 10−9). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box–containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.


Nature Genetics | 2002

A high-resolution recombination map of the human genome

Augustine Kong; Daniel F. Gudbjartsson; Jesus Sainz; Gudrun M. Jonsdottir; Sigurjon A. Gudjonsson; Bjorgvin Richardsson; Sigrun Sigurdardottir; John Barnard; Bjorn Hallbeck; Gisli Masson; Adam Shlien; Stefan Palsson; Michael L. Frigge; Thorgeir E. Thorgeirsson; Jeffrey R. Gulcher; Kari Stefansson

Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.


American Journal of Human Genetics | 2002

Neuregulin 1 and Susceptibility to Schizophrenia

Hreinn Stefansson; Engilbert Sigurdsson; Valgerdur Steinthorsdottir; Soley Bjornsdottir; T. Sigmundsson; Shyamali Ghosh; J Brynjolfsson; Steinunn Gunnarsdottir; Ómar Ívarsson; Thomas T. Chou; Omar Hjaltason; Birgitta Birgisdottir; Helgi Jonsson; Vala G. Gudnadottir; Elsa Gudmundsdottir; Asgeir Björnsson; Brynjólfur Ingvarsson; Andres Ingason; Sigmundur Sigfússon; Hronn Hardardottir; Richard P. Harvey; Donna Lai; Mingdong Zhou; Daniela Brunner; Vincent Mutel; Acuna Gonzalo; Greg Lemke; Jesus Sainz; Gardar Johannesson; Thorkell Andresson

The cause of schizophrenia is unknown, but it has a significant genetic component. Pharmacologic studies, studies of gene expression in man, and studies of mouse mutants suggest involvement of glutamate and dopamine neurotransmitter systems. However, so far, strong association has not been found between schizophrenia and variants of the genes encoding components of these systems. Here, we report the results of a genomewide scan of schizophrenia families in Iceland; these results support previous work, done in five populations, showing that schizophrenia maps to chromosome 8p. Extensive fine-mapping of the 8p locus and haplotype-association analysis, supplemented by a transmission/disequilibrium test, identifies neuregulin 1 (NRG1) as a candidate gene for schizophrenia. NRG1 is expressed at central nervous system synapses and has a clear role in the expression and activation of neurotransmitter receptors, including glutamate receptors. Mutant mice heterozygous for either NRG1 or its receptor, ErbB4, show a behavioral phenotype that overlaps with mouse models for schizophrenia. Furthermore, NRG1 hypomorphs have fewer functional NMDA receptors than wild-type mice. We also demonstrate that the behavioral phenotypes of the NRG1 hypomorphs are partially reversible with clozapine, an atypical antipsychotic drug used to treat schizophrenia.


Science | 2007

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir; Gudmar Thorleifsson; Andrei Manolescu; Solveig Gretarsdottir; Thorarinn Blondal; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asgeir Sigurdsson; Adam Baker; Arnar Palsson; Gisli Masson; Daniel F. Gudbjartsson; Kristinn P. Magnusson; Karl Andersen; Allan I. Levey; Valgerdur M. Backman; Sigurborg Matthiasdottir; Thorbjorg Jonsdottir; Stefan Palsson; Helga Einarsdottir; Steinunn Gunnarsdottir; Arnaldur Gylfason; Viola Vaccarino; W. Craig Hooper; Muredach P. Reilly; Christopher B. Granger; Harland Austin; Daniel J. Rader; Svati H. Shah; Arshed A. Quyyumi

The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.


Nature | 2009

Common variants conferring risk of schizophrenia

Hreinn Stefansson; Roel A. Ophoff; Stacy Steinberg; Ole A. Andreassen; Sven Cichon; Dan Rujescu; Thomas Werge; Olli Pietiläinen; Ole Mors; Preben Bo Mortensen; Engilbert Sigurdsson; Omar Gustafsson; Mette Nyegaard; Annamari Tuulio-Henriksson; Andres Ingason; Thomas Hansen; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Anders D. Børglum; Annette M. Hartmann; Anders Fink-Jensen; Merete Nordentoft; David M. Hougaard; Bent Nørgaard-Pedersen; Yvonne Böttcher; Jes Olesen; René Breuer; Hans-Jürgen Möller; Ina Giegling

Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the ‘genomic disorders’, have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.


Nature | 2008

A Variant Associated with Nicotine Dependence, Lung Cancer and Peripheral Arterial Disease

Thorgeir E. Thorgeirsson; Frank Geller; Patrick Sulem; Thorunn Rafnar; Anna Wiste; Kristinn P. Magnusson; Andrei Manolescu; Gudmar Thorleifsson; Hreinn Stefansson; Andres Ingason; Simon N. Stacey; Jon Thor Bergthorsson; Steinunn Thorlacius; Julius Gudmundsson; Thorlakur Jonsson; Margret Jakobsdottir; Jona Saemundsdottir; Olof Olafsdottir; Larus J. Gudmundsson; Gyda Bjornsdottir; Kristleifur Kristjansson; Halla Skuladottir; Helgi J. Ísaksson; Tomas Gudbjartsson; Gregory T. Jones; Thomas Mueller; Anders Gottsäter; Andrea Flex; Katja K. Aben; Femmie de Vegt

Smoking is a leading cause of preventable death, causing about 5 million premature deaths worldwide each year. Evidence for genetic influence on smoking behaviour and nicotine dependence (ND) has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important to public health. Smoking is the major risk factor for lung cancer (LC) and is one of the main risk factors for peripheral arterial disease (PAD). Here we identify a common variant in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24 with an effect on smoking quantity, ND and the risk of two smoking-related diseases in populations of European descent. The variant has an effect on the number of cigarettes smoked per day in our sample of smokers. The same variant was associated with ND in a previous genome-wide association study that used low-quantity smokers as controls, and with a similar approach we observe a highly significant association with ND. A comparison of cases of LC and PAD with population controls each showed that the variant confers risk of LC and PAD. The findings provide a case study of a gene–environment interaction, highlighting the role of nicotine addiction in the pathology of other serious diseases.


Nature | 2008

Genetics of gene expression and its effect on disease.

Valur Emilsson; Gudmar Thorleifsson; Bin Zhang; Amy Leonardson; Florian Zink; Jun Zhu; Sonia Carlson; Agnar Helgason; G. Bragi Walters; Steinunn Gunnarsdottir; Magali Mouy; Valgerdur Steinthorsdottir; Gudrun H. Eiriksdottir; Gyda Bjornsdottir; Inga Reynisdottir; Daniel F. Gudbjartsson; Anna Helgadottir; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Kristinn P. Magnusson; Hreinn Stefansson; Ragnheidur Fossdal; Kristleifur Kristjansson; Hjörtur Gislason; Tryggvi Stefansson; Björn Geir Leifsson; Unnur Thorsteinsdottir; John Lamb

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Nature Genetics | 2009

Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity

Gudmar Thorleifsson; G. Bragi Walters; Daniel F. Gudbjartsson; Valgerdur Steinthorsdottir; Patrick Sulem; Anna Helgadottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Steinunn Thorlacius; Ingileif Jonsdottir; Thorbjorg Jonsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Frosti Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Torsten Lauritzen; Katja K. Aben; A.L.M. Verbeek; Nel Roeleveld; E. Kampman; Lisa R. Yanek; Lewis C. Becker; Laufey Tryggvadottir; Thorunn Rafnar; Diane M. Becker; Jeffrey R. Gulcher

Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 × 10−7. This includes previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.


Nature Genetics | 2007

A variant in CDKAL1 influences insulin response and risk of type 2 diabetes.

Valgerdur Steinthorsdottir; Gudmar Thorleifsson; Inga Reynisdottir; Rafn Benediktsson; Thorbjorg Jonsdottir; G. Bragi Walters; Unnur Styrkarsdottir; Solveig Gretarsdottir; Valur Emilsson; Shyamali Ghosh; Adam Baker; Steinunn Snorradottir; Hjordis Bjarnason; Maggie C.Y. Ng; Torben Hansen; Yu Z. Bagger; Robert L. Wilensky; Muredach P. Reilly; Adebowale Adeyemo; Yuanxiu Chen; Jie Zhou; Vilmundur Gudnason; Guanjie Chen; Hanxia Huang; Kerrie Lashley; Ayo Doumatey; Wing Yee So; Ronald Cw Ma; Gitte Andersen; Knut Borch-Johnsen

We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13–1.27), P = 7.7 × 10−9) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11–1.40), P = 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31–1.72) and 1.55 (1.23–1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.


Nature Genetics | 2004

The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke.

Anna Helgadottir; Andrei Manolescu; Gudmar Thorleifsson; Solveig Gretarsdottir; Helga Jonsdottir; Unnur Thorsteinsdottir; Nilesh J. Samani; Gudmundur Gudmundsson; Struan F. A. Grant; Gudmundur Thorgeirsson; Sigurlaug Sveinbjörnsdóttir; Einar M Valdimarsson; Stefan E. Matthiasson; Halldor Johannsson; Olof Gudmundsdottir; Mark E. Gurney; Jesus Sainz; Margret Thorhallsdottir; Margret B. Andresdottir; Michael L. Frigge; Eric J. Topol; Augustine Kong; Vilmundur Gudnason; Hakon Hakonarson; Jeffrey R. Gulcher; Kari Stefansson

We mapped a gene predisposing to myocardial infarction to a locus on chromosome 13q12–13. A four-marker single-nucleotide polymorphism (SNP) haplotype in this locus spanning the gene ALOX5AP encoding 5-lipoxygenase activating protein (FLAP) is associated with a two times greater risk of myocardial infarction in Iceland. This haplotype also confers almost two times greater risk of stroke. Another ALOX5AP haplotype is associated with myocardial infarction in individuals from the UK. Stimulated neutrophils from individuals with myocardial infarction produce more leukotriene B4, a key product in the 5-lipoxygenase pathway, than do neutrophils from controls, and this difference is largely attributed to cells from males who carry the at-risk haplotype. We conclude that variants of ALOX5AP are involved in the pathogenesis of both myocardial infarction and stroke by increasing leukotriene production and inflammation in the arterial wall.

Collaboration


Dive into the Jeffrey R. Gulcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge