Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Holt is active.

Publication


Featured researches published by Jeffrey R. Holt.


Nature | 2004

TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells.

David P. Corey; Jaime García-Añoveros; Jeffrey R. Holt; Kelvin Y. Kwan; Shuh Yow Lin; Melissa A. Vollrath; Andrea Amalfitano; Eunice L.M. Cheung; Bruce H. Derfler; Anne Duggan; Gwenaëlle S. G. Géléoc; Paul A. Gray; Matthew P. Hoffman; Heidi L. Rehm; Daniel Tamasauskas; Duan Sun Zhang

Mechanical deflection of the sensory hair bundles of receptor cells in the inner ear causes ion channels located at the tips of the bundle to open, thereby initiating the perception of sound. Although some protein constituents of the transduction apparatus are known, the mechanically gated transduction channels have not been identified in higher vertebrates. Here, we investigate TRP (transient receptor potential) ion channels as candidates and find one, TRPA1 (also known as ANKTM1), that meets criteria for the transduction channel. The appearance of TRPA1 messenger RNA expression in hair cell epithelia coincides developmentally with the onset of mechanosensitivity. Antibodies to TRPA1 label hair bundles, especially at their tips, and tip labelling disappears when the transduction apparatus is chemically disrupted. Inhibition of TRPA1 protein expression in zebrafish and mouse inner ears inhibits receptor cell function, as assessed with electrical recording and with accumulation of a channel-permeant fluorescent dye. TRPA1 is probably a component of the transduction channel itself.


Cell | 2002

A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells

Jeffrey R. Holt; Susan K.H. Gillespie; D. William Provance; Kavita Shah; Kevan M. Shokat; David P. Corey; John A. Mercer; Peter G. Gillespie

Myosin-1c (also known as myosin-Ibeta) has been proposed to mediate the slow component of adaptation by hair cells, the sensory cells of the inner ear. To test this hypothesis, we mutated tyrosine-61 of myosin-1c to glycine, conferring susceptibility to inhibition by N(6)-modified ADP analogs. We expressed the mutant myosin-1c in utricular hair cells of transgenic mice, delivered an ADP analog through a whole-cell recording pipette, and found that the analog rapidly blocked adaptation to positive and negative deflections in transgenic cells but not in wild-type cells. The speed and specificity of inhibition suggests that myosin-1c participates in adaptation in hair cells.


Jaro-journal of The Association for Research in Otolaryngology | 2007

Differential Distribution of Stem Cells in the Auditory and Vestibular Organs of the Inner Ear

Kazuo Oshima; Christian Grimm; C. Eduardo Corrales; Pascal Senn; Rodrigo Martinez Monedero; Gwenaëlle S. G. Géléoc; Albert Edge; Jeffrey R. Holt; Stefan Heller

The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory epithelia, the spiral ganglion, and the stria vascularis. Organ of Corti and vestibular sensory epithelial stem cells give rise to cells that express multiple hair cell markers and express functional ion channels reminiscent of nascent hair cells. Spiral ganglion stem cells display features of neural stem cells and can give rise to neurons and glial cell types. We found that the ability for sphere formation in the mouse cochlea decreases about 100-fold during the second and third postnatal weeks; this decrease is substantially faster than the reduction of stem cells in vestibular organs, which maintain their stem cell population also at older ages. Coincidentally, the relative expression of developmental and progenitor cell markers in the cochlea decreases during the first 3 postnatal weeks, which is in sharp contrast to the vestibular system, where expression of progenitor cell markers remains constant or even increases during this period. Our findings indicate that the lack of regenerative capacity in the adult mammalian cochlea is either a result of an early postnatal loss of stem cells or diminishment of stem cell features of maturing cochlear cells.


Journal of Clinical Investigation | 2011

Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes

Yoshiyuki Kawashima; Gwenaëlle S. G. Géléoc; Kiyoto Kurima; Valentina Labay; Andrea Lelli; Yukako Asai; Tomoko Makishima; Doris K. Wu; Charles C. Della Santina; Jeffrey R. Holt; Andrew J. Griffith

Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel-like 1 (TMC1) cause hearing loss without vestibular dysfunction in both mice and humans, we investigated the contribution of Tmc1 and the closely related Tmc2 to mechanotransduction in mice. We found that Tmc1 and Tmc2 were expressed in mouse vestibular and cochlear hair cells and that GFP-tagged TMC proteins localized near stereocilia tips. Tmc2 expression was transient in early postnatal mouse cochlear hair cells but persisted in vestibular hair cells. While mice with a targeted deletion of Tmc1 (Tmc1(Δ) mice) were deaf and those with a deletion of Tmc2 (Tmc2(Δ) mice) were phenotypically normal, Tmc1(Δ)Tmc2(Δ) mice had profound vestibular dysfunction, deafness, and structurally normal hair cells that lacked all mechanotransduction activity. Expression of either exogenous TMC1 or TMC2 rescued mechanotransduction in Tmc1(Δ)Tmc2(Δ) mutant hair cells. Our results indicate that TMC1 and TMC2 are necessary for hair cell mechanotransduction and may be integral components of the mechanotransduction complex. Our data also suggest that persistent TMC2 expression in vestibular hair cells may preserve vestibular function in humans with hearing loss caused by TMC1 mutations.


Neuron | 2013

TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear

Bifeng Pan; Gwenaëlle S. G. Géléoc; Yukako Asai; Geoffrey C. Horwitz; Kiyoto Kurima; Kotaro Ishikawa; Yoshiyuki Kawashima; Andrew J. Griffith; Jeffrey R. Holt

Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.


The Journal of Neuroscience | 2006

The Very Large G-Protein-Coupled Receptor VLGR1: A Component of the Ankle Link Complex Required for the Normal Development of Auditory Hair Bundles

JoAnn McGee; Richard J. Goodyear; D. Randy McMillan; Eric A. Stauffer; Jeffrey R. Holt; Kirsten G. Locke; David G. Birch; P. Kevin Legan; Perrin C. White; Edward J. Walsh; Guy P. Richardson

Sensory hair bundles in the inner ear are composed of stereocilia that can be interconnected by a variety of different link types, including tip links, horizontal top connectors, shaft connectors, and ankle links. The ankle link antigen is an epitope specifically associated with ankle links and the calycal processes of photoreceptors in chicks. Mass spectrometry and immunoblotting were used to identify this antigen as the avian ortholog of the very large G-protein-coupled receptor VLGR1, the product of the Usher syndrome USH2C (Mass1) locus. Like ankle links, Vlgr1 is expressed transiently around the base of developing hair bundles in mice. Ankle links fail to form in the cochleae of mice carrying a targeted mutation in Vlgr1 (Vlgr1/del7TM), and the bundles become disorganized just after birth. FM1-43 [N-(3-triethylammonium)propyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] dye loading and whole-cell recordings indicate mechanotransduction is impaired in cochlear, but not vestibular, hair cells of early postnatal Vlgr1/del7TM mutant mice. Auditory brainstem recordings and distortion product measurements indicate that these mice are severely deaf by the third week of life. Hair cells from the basal half of the cochlea are lost in 2-month-old Vlgr1/del7TM mice, and retinal function is mildly abnormal in aged mutants. Our results indicate that Vlgr1 is required for formation of the ankle link complex and the normal development of cochlear hair bundles.


The Journal of Neuroscience | 2006

Physical and Functional Interaction between Protocadherin 15 and Myosin VIIa in Mechanosensory Hair Cells

Mathias Senften; Martin Schwander; Piotr Kazmierczak; Concepción Lillo; Jung Bum Shin; Tama Hasson; Gwenaëlle S. G. Géléoc; Peter G. Gillespie; David R. Williams; Jeffrey R. Holt; Ulrich Müller

Hair cells of the mammalian inner ear are the mechanoreceptors that convert sound-induced vibrations into electrical signals. The molecular mechanisms that regulate the development and function of the mechanically sensitive organelle of hair cells, the hair bundle, are poorly defined. We link here two gene products that have been associated with deafness and hair bundle defects, protocadherin 15 (PCDH15) and myosin VIIa (MYO7A), into a common pathway. We show that PCDH15 binds to MYO7A and that both proteins are expressed in an overlapping pattern in hair bundles. PCDH15 localization is perturbed in MYO7A-deficient mice, whereas MYO7A localization is perturbed in PCDH15-deficient mice. Like MYO7A, PCDH15 is critical for the development of hair bundles in cochlear and vestibular hair cells, controlling hair bundle morphogenesis and polarity. Cochlear and vestibular hair cells from PCDH15-deficient mice also show defects in mechanotransduction. Together, our findings suggest that PCDH15 and MYO7A cooperate to regulate the development and function of the mechanically sensitive hair bundle.


Neuron | 2005

Fast Adaptation in Vestibular Hair Cells Requires Myosin-1c Activity

Eric A. Stauffer; John D. Scarborough; Moritoshi Hirono; Emilie D. Miller; Kavita Shah; John A. Mercer; Jeffrey R. Holt; Peter G. Gillespie

In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells.


Nature Neuroscience | 2003

Developmental acquisition of sensory transduction in hair cells of the mouse inner ear

Gwenaëlle S. G. Géléoc; Jeffrey R. Holt

Sensory transduction in hair cells requires assembly of membrane-bound transduction channels, extracellular tip-links and intracellular adaptation motors with sufficient precision to confer nanometer displacement sensitivity. Here we present evidence based on FM1-43 fluorescence, scanning electron microscopy and RT-PCR that these three essential elements are acquired concurrently between embryonic day 16 and 17, several days after the appearance of hair bundles, and that their acquisition coincides with the onset of mechanotransduction.


Journal of Neurophysiology | 2009

Tonotopic Gradient in the Developmental Acquisition of Sensory Transduction in Outer Hair Cells of the Mouse Cochlea

Andrea Lelli; Yukako Asai; Andrew Forge; Jeffrey R. Holt; Gwenaëlle S. G. Géléoc

Inner ear hair cells are exquisite mechanosensors that transduce nanometer scale deflections of their sensory hair bundles into electrical signals. Several essential elements must be precisely assembled during development to confer the unique structure and function of the mechanotransduction apparatus. Here we investigated the functional development of the transduction complex in outer hair cells along the length of mouse cochlea acutely excised between embryonic day 17 (E17) and postnatal day 8 (P8). We charted development of the stereociliary bundle using scanning electron microscopy; FM1-43 uptake, which permeates hair cell transduction channels, mechanotransduction currents evoked by rapid hair bundle deflections, and mRNA expression of possible components of the transduction complex. We demonstrated that uptake of FM1-43 first occurred in the basal portion of the cochlea at P0 and progressed toward the apex over the subsequent week. Electrophysiological recordings obtained from 234 outer hair cells between E17 and P8 from four cochlear regions revealed a correlation between the pattern of FM1-43 uptake and the acquisition of mechanotransduction. We found a spatiotemporal gradient in the properties of transduction including onset, amplitude, operating range, time course, and extent of adaptation. We used quantitative RT-PCR to examine relative mRNA expression of several hair cell myosins and candidate tip-link molecules. We found spatiotemporal expression patterns for mRNA that encodes cadherin 23, protocadherin 15, myosins 3a, 7a, 15a, and PMCA2 that preceded the acquisition of transduction. The spatiotemporal expression patterns of myosin 1c and PMCA2 mRNA were correlated with developmental changes in several properties of mechanotransduction.

Collaboration


Dive into the Jeffrey R. Holt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bifeng Pan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Corey

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiyuki Kawashima

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Griffith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles Askew

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kiyoto Kurima

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge