Jeffrey R. Mock
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey R. Mock.
Journal of Psychiatric Research | 2010
Jeremy Cohen; Jeffrey R. Mock; Taylor Nichols; Janet N. Zadina; David M. Corey; Lisa Lemen; Ursula Bellugi; Albert M. Galaburda; Allan L. Reiss; Anne L. Foundas
Functional imaging in humans and anatomical data in monkeys have implicated the insula as a multimodal sensory integrative brain region. The topography of insular connections is organized by its cytoarchitectonic regions. Previous attempts to measure the insula have utilized either indirect or automated methods. This study was designed to develop a reliable method for obtaining volumetric magnetic resonance imaging (MRI) measurements of the human insular cortex, and to validate that method by examining the anatomy of insular cortex in adults with Williams syndrome (WS) and healthy age-matched controls. Statistical reliability was obtained among three raters for this method, supporting its reproducibility not only across raters, but within different software packages. The procedure described here utilizes native-space morphometry as well as a method for dividing the insula into connectivity-based sub-regions estimated from cytoarchitectonics. Reliability was calculated in both ANALYZE (N=3) and BrainImageJava (N=10) where brain scans were measured once in each hemisphere by each rater. This highly reliable method revealed total, anterior, and posterior insular volume reduction bilaterally (all ps<.002) in WS, after accounting for reduced total brain volumes in these participants. Although speculative, the reduced insular volumes in WS may represent a neural risk for the development of hyperaffiliative social behavior with increased specific phobias, and implicate the insula as a critical limbic integrative region. Native-space quantification of the insula may be valuable in the study of neurodevelopmental or neuropsychiatric disorders related to anxiety and social behavior.
Brain and Language | 2013
Anne L. Foundas; Jeffrey R. Mock; David M. Corey; Edward J. Golob; Edward G. Conture
The SpeechEasy is an electronic device designed to alleviate stuttering by manipulating auditory feedback via time delays and frequency shifts. Device settings (control, default, custom), ear-placement (left, right), speaking task, and cognitive variables were examined in people who stutter (PWS) (n=14) compared to controls (n=10). Among the PWS there was a significantly greater reduction in stuttering (compared to baseline) with custom device settings compared to the non-altered feedback (control) condition. Stuttering was reduced the most during reading, followed by narrative and conversation. For the conversation task, stuttering was reduced more when the device was worn in the left ear. Those individuals with a more severe stuttering rate at baseline had a greater benefit from the use of the device compared to individuals with less severe stuttering. Our results support the view that overt stuttering is associated with defective speech-language monitoring that can be influenced by manipulating auditory feedback.
European Journal of Neuroscience | 2011
Jeffrey R. Mock; Anne L. Foundas; Edward J. Golob
Previous studies have shown that speaking affects auditory and motor cortex responsiveness, which may reflect the influence of motor efference copy. If motor efference copy is involved, it would also likely influence auditory and motor cortical activity when preparing to speak. We tested this hypothesis by using auditory event‐related potentials and transcranial magnetic stimulation (TMS) of the motor cortex. In the speech condition subjects were visually cued to prepare a vocal response to a subsequent target, which was compared to a control condition without speech preparation. Auditory and motor cortex responsiveness at variable times between the cue and target were probed with an acoustic stimulus (Experiment 1, tone or consonant–vowels) or motor cortical TMS (Experiment 2). Acoustic probes delivered shortly before targets elicited a fronto‐central negative potential in the speech condition. Current density analysis showed that auditory cortical activity was attenuated at the beginning of the slow potential in the speech condition. Sensory potentials in response to probes had shorter latencies (N100) and larger amplitudes (P200) when consonant–vowels matched the sound of cue words. Motor cortex excitability was greater in the speech than in the control condition at all time points before picture onset. The results suggest that speech preparation induces top‐down regulation of sensory and motor cortex responsiveness, with different time courses for auditory and motor systems.
Brain and Language | 2015
Jeffrey R. Mock; Anne L. Foundas; Edward J. Golob
Motor efference copy conveys movement information to sensory areas before and during vocalization. We hypothesized speech preparation would modulate auditory processing, via motor efference copy, differently in men who stutter (MWS) vs. fluent adults. Participants (n=12/group) had EEG recorded during a cue-target paradigm with two conditions: speech which allowed for speech preparation, while a control condition did not. Acoustic stimuli probed auditory responsiveness between the cue and target. MWS had longer vocal reaction times (p<0.01) when the cue-target differed (10% of trials), suggesting a difficulty of rapidly updating their speech plans. Acoustic probes elicited a negative slow wave indexing motor efference copy that was smaller in MWS vs. fluent adults (p<0.03). Current density responses in MWS showed smaller left prefrontal responses and auditory responses that were delayed and correlated to stuttering rate. Taken together, the results provide insight into the cortical mechanisms underlying atypical speech planning and dysfluencies in MWS.
Clinical Neurophysiology | 2016
Jeffrey R. Mock; Anne L. Foundas; Edward J. Golob
OBJECTIVE Developmental stuttering is characterized by fluent speech punctuated by stuttering events, the frequency of which varies among individuals and contexts. Most stuttering events occur at the beginning of an utterance, suggesting neural dynamics associated with stuttering may be evident during speech preparation. METHODS This study used EEG to measure cortical activity during speech preparation in men who stutter, and compared the EEG measures to individual differences in stuttering rate as well as to a fluent control group. Each trial contained a cue followed by an acoustic probe at one of two onset times (early or late), and then a picture. There were two conditions: a speech condition where cues induced speech preparation of the pictures name and a control condition that minimized speech preparation. RESULTS Across conditions stuttering frequency correlated to cue-related EEG beta power and auditory ERP slow waves from early onset acoustic probes. CONCLUSIONS The findings reveal two new cortical markers of stuttering frequency that were present in both conditions, manifest at different times, are elicited by different stimuli (visual cue, auditory probe), and have different EEG responses (beta power, ERP slow wave). SIGNIFICANCE The cue-target paradigm evoked brain responses that correlated to pre-experimental stuttering rate.
Frontiers in Neuroscience | 2015
Jeffrey R. Mock; Michael J. Seay; Danielle R. Charney; John L. Holmes; Edward J. Golob
Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subjects scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120–200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models.
PLOS ONE | 2015
Debra S. Karhson; Jeffrey R. Mock; Edward J. Golob
Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230–340, parietal 400–460, frontal 550–750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity.
Cognitive and Behavioral Neurology | 2012
Tracey A. Knaus; Helen Tager-Flusberg; Jeffrey R. Mock; Rachel Dauterive; Anne L. Foundas
Objective:To examine prefrontal and occipital asymmetry (brain torque) in boys with autism spectrum disorder (ASD) and controls. A secondary aim was to study age-related changes in gray and white matter volume. Background:Several studies have found atypical early cortical development in ASD. Atypical brain torque, defined as a greater-than-normal left prefrontal and right occipital asymmetry, has been found in some studies of children and adults with ASD. This configuration may be an early neural marker of ASD risk. Methods:We studied 24 right-handed boys with ASD and 27 typically developing right-handed boys, 7 to 15 years old, obtaining neuropsychological profiles and measuring prefrontal and occipital volumes on magnetic resonance images. Results:Most participants had the expected rightward prefrontal and leftward occipital asymmetry, with no group differences in direction or degree of asymmetry. We found a trend toward larger prefrontal volume in the ASD group than in the controls. The controls also had a trend toward differences in age associations, correlating with total and left prefrontal white matter volumes. Conclusions:Our findings suggest that atypical brain torque may not be a neural signature of ASD, although our sample was limited to high-functioning, right-handed boys. Our results provide support for aberrant cortical development in ASD, continuing into adolescence, with prefrontal regions being disproportionally affected.
Frontiers in Psychology | 2017
Edward J. Golob; Jenna Winston; Jeffrey R. Mock
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.
Neuroreport | 2011
Jeffrey R. Mock; Anne L. Foundas; Edward J. Golob
The diversion of attention from a primary goal by irrelevant events is known as attention capture, and is often followed by a directed action. The hypothesis that corticospinal excitability is modulated by attention capture was tested using transcranial magnetic stimulation. Participants watched a video while sounds were intermittently presented. Motor evoked potentials (MEPs) were elicited in each hand using transcranial magnetic stimulation 1 s after sound onset. MEP amplitudes were assessed as a function of hand (dominant, nondominant), sound location (ipsilateral or contralateral to hand location), and sound sample valence (negative, neutral, positive). Results showed that MEP amplitudes increased during sound presentation, but only for the dominant hand. There were no effects of location or emotional valence. The selective modulation of the dominant hand motor cortex may indicate that auditory events can prime the preferred hand for action.