Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Culp is active.

Publication


Featured researches published by Jeffrey S. Culp.


Nature Structural & Molecular Biology | 2007

Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia.

David Cunningham; Dennis E. Danley; Kieran F. Geoghegan; Matthew C. Griffor; Julie Hawkins; Timothy A. Subashi; Alison H. Varghese; Mark Ammirati; Jeffrey S. Culp; Lise R. Hoth; Mahmoud N. Mansour; Katherine M McGrath; Andrew P. Seddon; Shirish Shenolikar; Kim Jonelle Stutzman-Engwall; Laurie C. Warren; Donghui Xia; Xiayang Qiu

Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with Kd = 170 nM at the neutral pH of plasma, but with a Kd as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.


Brain Research | 2003

Immunohistochemical localization of PDE10A in the rat brain

Thomas Francis Seeger; Brenda Bartlett; Timothy M. Coskran; Jeffrey S. Culp; Larry C. James; David L Krull; Jerry Lanfear; Anne M. Ryan; Christopher J. Schmidt; Christine A. Strick; Alison H. Varghese; Robert Williams; Patricia G Wylie; Frank S. Menniti

PDE10A is a newly identified cAMP/cGMP phosphodiesterase for which mRNA is highly expressed in the mammalian striatum. In the present study, PDE10A protein and mRNA expression throughout the rat brain were determined, using a monoclonal antibody (24F3.F11) for Western blot and immunohistochemical analyses and an antisense riboprobe for in situ hybridization. High levels of mRNA are observed in most of the neuronal cell bodies of striatal complex (caudate n, n. accumbens and olfactory tubercle), indicating that PDE10A is expressed by the striatal medium spiny neurons. PDE10A-like immunoreactivity is dense throughout the striatal neuropil, as well as in the internal capsule, globus pallidus, and substantia nigra. These latter regions lack significant expression of PDE10A mRNA. Thus, PDE10A is transported throughout the dendritic tree and down the axons to the terminals of the medium spiny neurons. These data suggest a role for PDE10A in regulating activity within both the striatonigral and striatopallidal pathways. In addition, PDE10A immunoreactivity and mRNA are found at lower levels in the hippocampal pyramidal cell layer, dentate granule cell layer and throughout the cortex and cerebellar granule cell layer. Immunoreactivity is detected only in cell bodies in these latter regions. This more restricted subcellular localization of PDE10A outside the striatum suggests a second, distinct function for the enzyme in these regions.


Nature Structural & Molecular Biology | 2007

Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules

Xiayang Qiu; Anil Mistry; Mark Ammirati; Boris A. Chrunyk; Ronald W. Clark; Yang Cong; Jeffrey S. Culp; Dennis E. Danley; Thomas B. Freeman; Kieran F. Geoghegan; Matthew C. Griffor; Steven J. Hawrylik; Cheryl Myers Hayward; Preston Hensley; Lise R. Hoth; George A. Karam; Maruja E. Lira; David B. Lloyd; Katherine M McGrath; Kim Jonelle Stutzman-Engwall; Ann Subashi; Timothy A. Subashi; John F. Thompson; Ing-Kae Wang; Honglei Zhao; Andrew P. Seddon

Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-Å resolution, revealing a 60-Å-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.


PLOS ONE | 2017

Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

Justin Hall; Amy Brault; Fabien Vincent; Shawn Weng; Hong Wang; Darren S. Dumlao; Ann Aulabaugh; Dikran Aivazian; Dana Castro; Ming Chen; Jeffrey S. Culp; Ken Dower; Joseph Gardner; Steven J. Hawrylik; Douglas T. Golenbock; David Hepworth; Mark Horn; Lyn H. Jones; Peter Jones; Eicke Latz; Jing Li; Lih-Ling Lin; Wen Lin; David C. Lin; Frank Lovering; Nootaree Niljanskul; Ryan Nistler; Betsy S. Pierce; Olga Plotnikova; Daniel Schmitt

Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2′, 3′ -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2′-5′ and 3′-5′ phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.


Journal of Medicinal Chemistry | 2017

Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

Kim Huard; Kay Ahn; Paul Amor; David A. Beebe; Kris A. Borzilleri; Boris A. Chrunyk; Steven B. Coffey; Yang Cong; Edward L. Conn; Jeffrey S. Culp; Matthew S. Dowling; Matthew Gorgoglione; Jemy A. Gutierrez; John D. Knafels; Erik LaChapelle; Jayvardhan Pandit; Kevin D. Parris; Sylvie Perez; Jeffrey A. Pfefferkorn; David A. Price; Brian Raymer; Trenton T. Ross; Andre Shavnya; Aaron Smith; Timothy A. Subashi; Gregory Tesz; Benjamin A. Thuma; Meihua Tu; John D. Weaver; Yan Weng

Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.


Biochemistry | 1992

Use of protein unfolding studies to determine the conformational and dimeric stabilities of HIV-1 and SIV proteases

Stephan K. Grant; Ingrid C. Deckman; Jeffrey S. Culp; Michael D. Minnich; Ian Brooks; Preston Hensley; Christine Debouck; Thomas D. Meek


Biochemistry | 1993

Inhibition of human immunodeficiency virus-1 protease by a C2-symmetric phosphinate. Synthesis and crystallographic analysis

Sherin S. Abdel-Meguid; Baoguang Zhao; K.H Murthy; Evon Winborne; J.K Choi; R.L DesJarlais; Michael D. Minnich; Jeffrey S. Culp; Christine Debouck; Tomaszek; Thomas D. Meek; Geoffrey B. Dreyer


Proteins | 1992

Characterization of HIV‐1 p24 self‐association using analytical affinity chromatography

Sergio Rosé; Preston Hensley; Daniel J. O'Shannessy; Jeffrey S. Culp; Christine Debouck; Irwin M. Chaiken


Biochemistry | 1991

Purification and biochemical characterization of recombinant simian immunodeficiency virus protease and comparison to human immunodeficiency virus type 1 protease

Stephan K. Grant; Ingrid C. Deckman; Michael D. Minnich; Jeffrey S. Culp; Samuel G. Franklin; Geoffrey B. Dreyer; Thaddeus A. Tomaszek; Christine Debouck; Thomas D. Meek


Biochemistry | 1993

Three-dimensional structure of a simian immunodeficiency virus protease/inhibitor complex. Implications for the design of human immunodeficiency virus type 1 and 2 protease inhibitors.

Baoguang Zhao; Evon Winborne; Michael D. Minnich; Jeffrey S. Culp; Christine Debouck; Sherin S. Abdel-Meguid

Researchain Logo
Decentralizing Knowledge