Jeffrey S. Huo
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey S. Huo.
Biochimica et Biophysica Acta | 2013
Jeffrey S. Huo; Elias T. Zambidis
BACKGROUND Induced pluripotent stem cells (iPSC) derived from reprogrammed patient somatic cells possess enormous therapeutic potential. However, unlocking the full capabilities of iPSC will require an improved understanding of the molecular mechanisms which govern the induction and maintenance of pluripotency, as well as directed differentiation to clinically relevant lineages. Induced pluripotency of a differentiated cell is mediated by sequential cascades of genetic and epigenetic reprogramming of somatic histone and DNA CpG methylation marks. These genome-wide changes are mediated by a coordinated activity of transcription factors and epigenetic modifying enzymes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are now recognized as an important third class of regulators of the pluripotent state. SCOPE OF REVIEW This review surveys the currently known roles and mechanisms of ncRNAs in regulating the embryonic and induced pluripotent states. MAJOR CONCLUSIONS Through a variety of mechanisms, ncRNAs regulate constellations of key pluripotency genes and epigenetic regulators, and thus critically determine induction and maintenance of the pluripotent state. GENERAL SIGNIFICANCE A further understanding of the roles of ncRNAs in regulating pluripotency may help assess the quality of human iPSC reprogramming. Additionally, ncRNA biology may help decipher potential transcriptional and epigenetic commonalities between the self renewal processes that govern both ESC and tumor initiating cancer stem cells (CSC). This article is part of a Special Issue entitled Biochemistry of Stem Cells.
PLOS ONE | 2012
Tea Soon Park; Jeffrey S. Huo; Ann Peters; C. Conover Talbot; Karan Verma; Ludovic Zimmerlin; Ian M. Kaplan; Elias T. Zambidis
Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self-renewal and differentiation in both hematopoietic progenitors and ESC.
Stem cell reports | 2016
Nathan Salomonis; Phillip Dexheimer; Larsson Omberg; Robin Schroll; Stacy Bush; Jeffrey S. Huo; Lynn M. Schriml; Shannan J. Ho Sui; Mehdi Keddache; Christopher N. Mayhew; Shiva Kumar Shanmukhappa; James M. Wells; Kenneth Daily; Shane Hubler; Yuliang Wang; Elias T. Zambidis; Adam A. Margolin; Winston Hide; Antonis K. Hatzopoulos; Punam Malik; Jose A. Cancelas; Bruce J. Aronow; Carolyn Lutzko
Summary The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.
Biology of Blood and Marrow Transplantation | 2016
Orly R. Klein; Allen R. Chen; Christopher J. Gamper; David M. Loeb; Elias T. Zambidis; Nicolas J. Llosa; Jeffrey S. Huo; Amy E. DeZern; Diana Steppan; Nancy Robey; Mary Jo Holuba; Kenneth R. Cooke; Heather J. Symons
Allogeneic hematopoietic stem cell transplantation (HSCT) is curative for many nonmalignant pediatric disorders, including hemoglobinopathies, bone marrow failure syndromes, and immunodeficiencies. There is great success using HLA-matched related donors for these patients; however, the use of alternative donors has been associated with increased graft failure, graft-versus-host disease (GVHD), and transplant-related mortality (TRM). HSCT using alternative donors with post-transplantation cyclophosphamide (PT/Cy) for GVHD prophylaxis has been performed for hematologic malignancies with engraftment, GVHD, and TRM comparable with that seen with HLA-matched related donors. There are limited reports of HSCT in nonmalignant pediatric disorders other than hemoglobinopathies using alternative donors and PT/Cy. We transplanted 11 pediatric patients with life-threatening nonmalignant conditions using reduced-intensity conditioning, alternative donors, and PT/Cy alone or in combination with tacrolimus and mycophenolate mofetil. We observed limited GVHD, no TRM, and successful engraftment sufficient to eliminate manifestations of disease in all patients. Allogeneic HSCT using alternative donors and PT/Cy shows promise for curing nonmalignant disorders; development of prospective clinical trials to confirm these observations is warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Sumiko Kurachi; Jeffrey S. Huo; Afshin Ameri; Kezhong Zhang; Akiyasu C. Yoshizawa; Kotoku Kurachi
Regulation of age-related changes in gene expression underlies many diseases. We previously discovered the first puberty-onset gene switch, the age-related stability element (ASE)/age-related increase element (AIE)-mediated genetic mechanism for age-related gene regulation. Here, we report that this mechanism underlies the mysterious puberty-onset amelioration of abnormal bleeding seen in hemophilia B Leyden. Transgenic mice robustly mimicking the Leyden phenotype were constructed. Analysis of these animals indicated that ASE plays a central role in the puberty-onset amelioration of the disease. Human factor IX expression in these animals was reproducibly nullified by hypophysectomy, but nearly fully restored by administration of growth hormone, being consistent with the observed sex-independent recovery of factor IX expression. Ets1 was identified as the specific liver nuclear protein binding only to the functional ASE, G/CAGGAAG, and not to other Ets consensus elements. This study demonstrates the clinical relevance of the first discovered puberty-onset gene switch, the ASE/AIE-mediated regulatory mechanism.
Development | 2016
Ludovic Zimmerlin; Tea Soon Park; Jeffrey S. Huo; Karan Verma; Sarshan R. Pather; C. Conover Talbot; Jasmin Roya Agarwal; Diana Steppan; Yang W. Zhang; Michael Considine; Hong Guo; Xiufeng Zhong; Christian Gutierrez; Leslie Cope; M. Valeria Canto-Soler; Alan D. Friedman; Stephen B. Baylin; Elias T. Zambidis
The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i). LIF-3i-reverted hPSCs retained normal karyotypes and genomic imprints, and attained defining mouse ESC-like functional features, including high clonal self-renewal, independence from MEK/ERK signaling, dependence on JAK/STAT3 and BMP4 signaling, and naïve-specific transcriptional and epigenetic configurations. Tankyrase inhibition promoted a stable acquisition of a human preimplantation ICM-like ground state via modulation of WNT signaling, and was most efficacious in efficiently reprogrammed conventional hiPSCs. Importantly, naïve reversion of a broad repertoire of conventional hiPSCs reduced lineage-primed gene expression and significantly improved their multilineage differentiation capacities. Stable naïve hPSCs with reduced genetic variability and improved functional pluripotency will have great utility in regenerative medicine and human disease modeling. Summary: A broad repertoire of conventional human ESCs and transgene-independent iPSC lines can be reverted to stable naive states using WNT, MEK/ERK and tankyrase inhibition.
Biology of Blood and Marrow Transplantation | 2017
Orly R. Klein; Jessica Buddenbaum; Noah Tucker; Allen R. Chen; Christopher J. Gamper; David M. Loeb; Elias T. Zambidis; Nicolas J. Llosa; Jeffrey S. Huo; Nancy Robey; Mary Jo Holuba; Yvette L. Kasamon; Shannon R. McCurdy; Richard F. Ambinder; Javier Bolaños-Meade; Leo Luznik; Ephraim J. Fuchs; Richard J. Jones; Kenneth R. Cooke; Heather J. Symons
Lower-intensity conditioning regimens for haploidentical blood or marrow transplantation (BMT) are safe and efficacious for adult patients with hematologic malignancies. We report data for pediatric/young adult patients with high-risk hematologic malignancies (n = 40) treated with nonmyeloablative haploidentical BMT with post-transplantation cyclophosphamide from 2003 to 2015. Patients received a preparative regimen of fludarabine, cyclophosphamide, and total body irradiation. Post-transplantation immunosuppression consisted of cyclophosphamide, mycophenolate mofetil, and tacrolimus. Donor engraftment occurred in 29 of 32 (91%), with median time to engraftment of neutrophils >500/µL of 16 days (range, 13 to 22) and for platelets >20,000/µL without transfusion of 18 days (range, 12 to 62). Cumulative incidences of acute graft-versus-host disease (GVHD) grades II to IV and grades III and IV at day 100 were 33% and 5%, respectively. The cumulative incidence of chronic GVHD was 23%, with 7% moderate-to-severe chronic GVHD, according to National Institutes of Health consensus criteria. Transplantation-related mortality (TRM) at 1 year was 13%. The cumulative incidence of relapse at 2 years was 52%. With a median follow-up of 20 months (range, 3 to 148), 1-year actuarial overall and event-free survival were 56% and 43%, respectively. Thus, we demonstrate excellent rates of engraftment, GVHD, and TRM in pediatric/young adult patients treated with this regimen. This approach is a widely available, safe, and feasible option for pediatric and young adult patients with high-risk hematologic malignancies, including those with a prior history of myeloablative BMT and/or those with comorbidities or organ dysfunction that preclude eligibility for myeloablative BMT.
BMC Systems Biology | 2014
Hernan Roca; Manjusha Pande; Jeffrey S. Huo; James R. Hernandez; James D. Cavalcoli; Kenneth J. Pienta; Richard C. McEachin
BackgroundMesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC).ResultsIn the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET.ConclusionsWe find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention.
Current Opinion in Genetics & Development | 2014
Jeffrey S. Huo; Stephen B. Baylin; Elias T. Zambidis
A growing body of work has raised concern that many human pluripotent stem cell (hPSC) lines possess tumorigenic potential following differentiation to clinically relevant lineages. In this review, we highlight recent work characterizing the spectrum of cancer-like epigenetic derangements in human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) that are associated with reprogramming errors or prolonged culture that may contribute to such tumorigenicity. These aberrations include cancer-like promoter DNA hypermethylation and histone marks associated with pluripotency, as well as aberrant X-chromosome regulation. We also feature recent work that suggests optimized high-fidelity reprogramming derivation methods can minimize cancer-associated epigenetic aberrations in hPSC, and thus ultimately improve the ultimate clinical utility of hiPSC in regenerative medicine.
Circulation | 2013
Tea Soon Park; Imran Bhutto; Ludovic Zimmerlin; Jeffrey S. Huo; Pratik Nagaria; Diana Miller; Abdul Jalil Rufaihah; Connie Talbot; Jack Aguilar; Rhonda Grebe; Carol Merges; Renee Reijo-Pera; Ricardo A. Feldman; Feyruz V. Rassool; John P. Cooke; Gerard A. Lutty; Elias T. Zambidis
Background— The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)–derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. Methods and Results— VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31+CD146+ VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion–injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell– and CB-iPSC–derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. Conclusions— VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.