Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Johnson is active.

Publication


Featured researches published by Jeffrey S. Johnson.


Frontiers in Psychology | 2011

Increased alpha-band power during the retention of shapes and shape-location associations in visual short-term memory

Jeffrey S. Johnson; David W. Sutterer; Daniel J. Acheson; Jarrod A. Lewis-Peacock; Bradley R. Postle

Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory.


Journal of Experimental Psychology: Human Perception and Performance | 2008

The role of attention in the maintenance of feature bindings in visual short-term memory.

Jeffrey S. Johnson; Andrew Hollingworth; Steven J. Luck

This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were combined in a binding-memory condition. In the critical experiment, a demanding visual search task requiring sequential shifts of spatial attention was interposed during the delay interval of the change-detection task. If attention is more important for the maintenance of feature bindings than for the maintenance of unbound feature values, the attention-requiring search task should specifically disrupt performance in the binding-memory task. Contrary to this proposal, it was found that memory for bindings and memory for features were equally impaired by the search task.


Psychological Science | 2009

A Dynamic Neural Field Model of Visual Working Memory and Change Detection

Jeffrey S. Johnson; John P. Spencer; Steven J. Luck; Gregor Schöner

Efficient visually guided behavior depends on the ability to form, retain, and compare visual representations for objects that may be separated in space and time. This ability relies on a short-term form of memory known as visual working memory. Although a considerable body of research has begun to shed light on the neurocognitive systems subserving this form of memory, few theories have addressed these processes in an integrated, neurally plausible framework. We describe a layered neural architecture that implements encoding and maintenance, and links these processes to a plausible comparison process. In addition, the model makes the novel prediction that change detection will be enhanced when metrically similar features are remembered. Results from experiments probing memory for color and for orientation were consistent with this novel prediction. These findings place strong constraints on models addressing the nature of visual working memory and its underlying mechanisms.


Brain Research | 2009

A layered neural architecture for the consolidation, maintenance, and updating of representations in visual working memory

Jeffrey S. Johnson; John P. Spencer; Gregor Schöner

Many everyday tasks rely on our ability to hold information about a perceived stimulus in mind after that stimulus is no longer visible and to compare this information with incoming perceptual information. This ability has been shown to rely on a short-term form of visual memory that has come to be known as visual working memory. Research and theory at both the behavioral and neural levels has begun to provide important insights into the basic properties of the neuro-cognitive systems underlying specific aspects of this form of memory. However, to date, no neurally-plausible theory has been proposed that addresses both the storage of information in working memory and the comparison process in a single framework. The present paper presents a layered neural field architecture that addresses these limitations. In a series of simulations, we show how the model can be used to capture each of the components underlying performance in simple visual comparison tasks--from the encoding, consolidation, and maintenance of information in working memory, to comparison and updating in response to changed inputs. Importantly, the proposed model demonstrates how these elementary perceptual and cognitive functions emerge from the coordinated activity of an integrated, dynamic neural system.


Psychonomic Bulletin & Review | 2007

Implicit memory influences the allocation of attention in visual cortex

Jeffrey S. Johnson; Geoffrey F. Woodman; Elsie L. Braun; Steven J. Luck

The visual environment is highly regular, with particular objects frequently appearing in specific locations. Previous studies of visual search have shown that people take advantage of such regularities, detecting targets more quickly when they appear at a predictable location within a given spatial configuration. Moreover, this effect depends on implicit rather than explicit memory for the configurations. These studies have suggested that implicit long-term memory for contextual information influences the allocation of attention, modulating the flow of information through visual cortex. The present study used event-related potentials to provide the first direct support for this proposal. We suggest that this guidance of attention by implicit memory is important in the natural environment because it allows environmental regularities to influence perception without the intervention of limited-capacity conscious processes.


Journal of Neurophysiology | 2012

Task-dependent changes in cortical excitability and effective connectivity: a combined TMS-EEG study

Jeffrey S. Johnson; Bornali Kundu; Adenauer G. Casali; Bradley R. Postle

The brains electrical response to transcranial magnetic stimulation (TMS) is known to be influenced by exogenous factors such as the frequency and intensity of stimulation and the orientation and positioning of the stimulating coil. Less understood, however, is the influence of endogenous neural factors, such as global brain state, on the TMS-evoked response (TMS-ER). In the present study, we explored how changes in behavioral state affect the TMS-ER by perturbing the superior parietal lobule (SPL) with single pulses of TMS and measuring consequent differences in the frequency, strength, and spatial spread of TMS-evoked currents during the delay period of a spatial short-term memory task and during a period of passive fixation. Results revealed that task performance increased the overall strength of electrical currents induced by TMS, increased the spatial spread of TMS-evoked activity to distal brain regions, and increased the ability of TMS to reset the phase of ongoing broadband cortical oscillations. By contrast, task performance had little effect on the dominant frequency of the TMS-ER, both locally and at distal brain areas. These findings contribute to a growing body of work using combined TMS and neuroimaging methods to explore task-dependent changes in the functional organization of cortical networks implicated in task performance.


Emotion | 2015

Worry Is Associated With Impaired Gating of Threat From Working Memory

Daniel M. Stout; Alexander J. Shackman; Jeffrey S. Johnson; Christine L. Larson

Dispositional anxiety is a well-established risk factor for the development of anxiety and other emotional disorders. These disorders are common, debilitating, and challenging to treat, pointing to the need to understand the more elementary neurocognitive mechanisms that confer elevated risk. Importantly, many of the maladaptive behaviors characteristic of anxiety, such as worry, occur when threat is absent. This raises the possibility that worry reflects difficulties gating threat-related information from working memory--a limited capacity workspace that supports the maintenance, recall, and manipulation of information--and facilitates goal-directed thoughts and actions. Here, we tested, for the first time, whether trait-like individual differences in worry, a key facet of the anxious phenotype, reflect difficulties gating threat and neutral-related distracters from working memory. Results indicated that both dispositional worry and anxiety individually predicted the combined filtering cost of threat and neutral distracters. Importantly, worry was associated with inefficient filtering of threat-related, but not neutral, distracters from working memory. In contrast, dispositional anxiety was related to a similar level of threat and neutral filtering cost. Furthermore, dispositional anxietys relationship to filtering of threat was predominantly driven by differences in worry. These results suggest that the propensity to worry is characterized by a failure to gate task-irrelevant threat from working memory. These results provide a framework for understanding the mechanisms underlying chronic worry and, more broadly, the cognitive architecture of dispositional anxiety.


Journal of Neurophysiology | 2012

Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

Jeffrey S. Johnson; Pingbo Yin; Kevin N. O'Connor; Mitchell L. Sutter

Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1.


Attention Perception & Psychophysics | 2014

Beyond slots and resources: Grounding cognitive concepts in neural dynamics

Jeffrey S. Johnson; Vanessa R. Simmering; Aaron T. Buss

Research over the past decade has suggested that the ability to hold information in visual working memory (VWM) may be limited to as few as three to four items. However, the precise nature and source of these capacity limits remains hotly debated. Most commonly, capacity limits have been inferred from studies of visual change detection, in which performance declines systematically as a function of the number of items that participants must remember. According to one view, such declines indicate that a limited number of fixed-resolution representations are held in independent memory “slots.” Another view suggests that such capacity limits are more apparent than real, but emerge as limited memory resources are distributed across more to-be-remembered items. Here we argue that, although both perspectives have merit and have generated and explained impressive amounts of empirical data, their central focus on the representations—rather than processes—underlying VWM may ultimately limit continuing progress in this area. As an alternative, we describe a neurally grounded, process-based approach to VWM: the dynamic field theory. Simulations demonstrate that this model can account for key aspects of behavioral performance in change detection, in addition to generating novel behavioral predictions that have been confirmed experimentally. Furthermore, we describe extensions of the model to recall tasks, the integration of visual features, cognitive development, individual differences, and functional imaging studies of VWM. We conclude by discussing the importance of grounding psychological concepts in neural dynamics, as a first step toward understanding the link between brain and behavior.


Cognition | 2010

The role of experience in location estimation: Target distributions shift location memory biases

John Lipinski; Vanessa R. Simmering; Jeffrey S. Johnson; John P. Spencer

Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93, 75-97]. This conflicts with earlier results showing that location estimation is biased relative to the spatial distribution of targets [Spencer, J. P., & Hund, A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial categories. Journal of Experimental Psychology: General, 131, 16-37]. Here, we resolve this controversy by using a task based on Huttenlocher et al. (Experiment 4) with minor modifications to enhance our ability to detect experience-dependent effects. Results after the first block of trials replicate the pattern reported in Huttenlocher et al. After additional experience, however, participants showed biases that significantly shifted according to the target distributions. These results are consistent with the Dynamic Field Theory, an alternative theory of spatial cognition that integrates long-term memory traces across trials relative to the perceived structure of the task space.

Collaboration


Dive into the Jeffrey S. Johnson's collaboration.

Top Co-Authors

Avatar

John P. Spencer

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley R. Postle

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Luck

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrea Bocincova

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Vanessa R. Simmering

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Heinz

North Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge