Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Karns is active.

Publication


Featured researches published by Jeffrey S. Karns.


Applied and Environmental Microbiology | 2000

Leaching of Escherichia coli O157:H7 in Diverse Soils under Various Agricultural Management Practices

Joel V. Gagliardi; Jeffrey S. Karns

ABSTRACT Application of animal manures to soil as crop fertilizers is an important means for recycling the nitrogen and phosphorus which the manures contain. Animal manures also contain bacteria, including many types of pathogens. Manure pathogen levels depend on the source animal, the animals state of health, and how the manure was stored or treated before use. Rainfall may result in pathogen spread into soil by runoff from stored or unincorporated manure or by leaching through the soil profile. Steady rainfall consisting of 16.5 mm h−1 was applied to 100-mm disturbed soil cores that were treated with manure and inoculated with Escherichia coli O157:H7 strain B6914. The level of B6914 in leachate was near the inoculum level each hour for 8 h, as was the level of B6914 at several soil depths after 24 h, indicating that there was a high rate of growth. Bacterial movement through three different types of soil was then compared by using disturbed (tilled) and intact (no-till) soil cores and less intense rainfall consisting of 25.4 mm on 4 consecutive days and then four more times over a 17-day period. Total B6914 levels exceeded the inoculum levels for all treatments except intact clay loam cores. B6914 levels in daily leachate samples decreased sharply with time, although the levels were more constant when intact sandy loam cores were used. The presence of manure often increased total B6914 leachate and soil levels in intact cores but had the opposite effect on disturbed soil cores. Ammonia and nitrate levels correlated with B6914 and total coliform levels in leachate. We concluded that tillage practice, soil type, and method of pathogen delivery affect but do not prevent vertical E. coli O157:H7 and coliform transport in soil and that soluble nitrogen may enhance transport.


Biosensors and Bioelectronics | 2003

A handheld real time thermal cycler for bacterial pathogen detection.

James Higgins; Shanavaz Nasarabadi; Jeffrey S. Karns; Daniel R. Shelton; Mary Cooper; Aiah Gbakima; Ronald P. Koopman

The handheld advanced nucleic acid analyzer (HANAA) is a portable real time thermal cycler unit that weighs under 1 kg and uses silicon and platinum-based thermalcycler units to conduct rapid heating and cooling of plastic reaction tubes. Two light emitting diodes (LED) provide greater than 1 mW of electrical power at wavelengths of 490 nm (blue) and 525 nm (green), allowing detection of the dyes FAM and JOE/TAMRA. Results are displayed in real time as bar graphs, and up to three, 4-sample assays can be run on the charge of the 12 V portable battery pack. The HANAA was evaluated for detection of defined Escherichia coli strains, and wild-type colonies isolated from stream water, using PCR for the lac Z and Tir genes. PCR reactions using SYBR Green dye allowed detection of E. coli ATCC 11775 and E. coli O157:H7 cells in under 30 min of assay time; however, background fluorescence associated with dye binding to nonspecific PCR products was present. DNA extracted from three isolates of Bacillus anthracis Ames, linked to a bioterrorism incident in Washington DC in October 2001, were also successfully tested on the HANAA using primers for the vrrA and capA genes. Positive results were observed at 32 and 22 min of assay time, respectively. A TaqMan probe specific to the aroQ gene of Erwinia herbicola was tested on the HANAA and when 500 cells were used as template, positive results were observed after only 7 min of assay time. Background fluorescence associated with the use of the probe was negligible. The HANAA is unique in offering real time PCR in a handheld format suitable for field use; a commercial version of the instrument, offering six reaction chambers, is available as of Fall 2002.


Applied and Environmental Microbiology | 2003

A Field Investigation of Bacillus anthracis Contamination of U.S. Department of Agriculture and Other Washington, D.C., Buildings during the Anthrax Attack of October 2001

James Higgins; Mary Cooper; Linda Schroeder-Tucker; Scott Black; David Miller; Jeffrey S. Karns; Erlynn Manthey; Roger Breeze; Michael L. Perdue

ABSTRACT In response to a bioterrorism attack in the Washington, D.C., area in October 2001, a mobile laboratory (ML) was set up in the city to conduct rapid molecular tests on environmental samples for the presence of Bacillus anthracis spores and to route samples for further culture analysis. The ML contained class I laminar-flow hoods, a portable autoclave, two portable real-time PCR devices (Ruggedized Advanced Pathogen Identification Device [RAPID]), and miscellaneous supplies and equipment to process samples. Envelopes and swab and air samples collected from 30 locations in the metropolitan area once every three days were subjected to visual examination and DNA extraction, followed by real-time PCR using freeze-dried, fluorescent-probe-based reagents. Surface swabs and air samples were also cultured for B. anthracis at the National Veterinary Service Laboratory (NVSL) in Ames, Iowa. From 24 October 2001 to 15 September 2002, 2,092 pieces of mail were examined, 405 real-time PCR assays were performed (comprising 4,639 samples), and at the NVSL 6,275 samples were subjected to over 18,000 platings. None of the PCR assays on DNA extracted from swab and air samples were positive, but viable spores were cultured from surface swabs taken from six locations in the metropolitan area in October, November, and December 2001 and February, March, and May 2002. DNA extracted from these suspected B. anthracis colonies was positive by real-time and conventional PCRs for the lethal factor, pXO1, and for capA and vrr genes; sequence analysis of the latter amplicons indicated >99% homology with the Ames, vollum, B6273-93, C93022281, and W-21 strains of B. anthracis, suggesting they arose from cross-contamination during the attack through the mail. The RAPID-based PCR analysis provided fast confirmation of suspect colonies from an overnight incubation on agar plates.


Journal of Dairy Science | 2010

Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes

Alejandra A. Latorre; J.S. Van Kessel; Jeffrey S. Karns; M.J. Zurakowski; Abani K. Pradhan; Kathryn J. Boor; Bhushan M. Jayarao; B.A. Houser; C.S. Daugherty; Y.H. Schukken

The objective of this study was to assess the presence of a Listeria monocytogenes-containing biofilm in milking equipment as a potential source of bulk tank milk contamination on a dairy farm where milk contamination had been previously documented. Samples were collected from milking equipment and milking parlor premises on 4 occasions and analyzed for the presence of L. monocytogenes. Pulsed-field gel electrophoresis (PFGE) typing was conducted on L. monocytogenes isolates from the milking equipment, parlor and storage room floors, bulk tank milk, and in-line milk filters. Pieces from milk meters and rubber liners were obtained to visually assess the presence of a biofilm using scanning electron microscopy. A total of 6 (15%), 4 (25%), and 1 (6%) samples were culture-positive for L. monocytogenes in the first, second, and third sample collection, respectively. Two samples were L. monocytogenes hly PCR-positive but were culture-negative in the fourth sample collection. Combined AscI and ApaI restriction analysis yielded 6 PFGE types for 15 L. monocytogenes isolates obtained from milking equipment, parlor, bulk tank milk, and milk filters. A predominant and persistent PFGE type (PFGE type T) was observed among these L. monocytogenes isolates (9/15 isolates). Scanning electron microscopy of samples from the bottom cover of 2 milk meters showed the presence of individual and clusters of bacteria, mainly associated with surface scratches. The presence of a bacterial biofilm was observed on the bottom covers of the 2 milk meters. Prevention of the establishment of biofilms in milking equipment is a crucial step in fulfilling the requirement of safe, high-quality milk.


Journal of Food Protection | 2011

Prevalence of Salmonella enterica, Listeria monocytogenes, and Escherichia coli Virulence Factors in Bulk Tank Milk and In-Line Filters from U.S. Dairies

Jo Ann S. Van Kessel; Jeffrey S. Karns; Jason E. Lombard; Christine A. Kopral

The zoonotic bacteria Salmonella enterica, Listeria monocytogenes, and Escherichia coli are known to infect dairy cows while not always causing clinical signs of disease. These pathogens are sometimes found in raw milk, and human disease outbreaks due to these organisms have been associated with the consumption of raw milk or raw milk products. Bulk tank milk (BTM) samples (536) and in-line milk filters (519) collected from dairy farms across the United States during the National Animal Health Monitoring Systems Dairy 2007 study were analyzed by real-time PCR for the presence of S. enterica and pathogenic forms of E. coli and by culture techniques for the presence of L. monocytogenes. S. enterica was detected in samples from 28.1% of the dairy operations, primarily in milk filters. Salmonella was isolated from 36 of 75 PCR-positive BTM samples and 105 of 174 PCR-positive filter samples, and the isolates were serotyped. Cerro, Kentucky, Muenster, Anatum, and Newport were the most common serotypes. L. monocytogenes was isolated from 7.1% of the dairy operations, and the 1/2a complex was the most common serotype, followed by 1/2b and 4b (lineage 1). Shiga toxin genes were detected in enrichments from 15.2% of the BTM samples and from 51.0% of the filters by real-time PCR. In most cases, the cycle threshold values for the PCR indicated that toxigenic strains were not a major part of the enrichment populations. These data confirm those from earlier studies showing significant contamination of BTM by zoonotic bacterial pathogens and that the consumption of raw milk and raw milk products presents a health risk.


Genome Biology and Evolution | 2013

Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

Ruth Timme; James B. Pettengill; Marc W. Allard; Errol Strain; Rodolphe Barrangou; Chris Wehnes; JoAnn S. Van Kessel; Jeffrey S. Karns; Steven M. Musser; Eric W. Brown

The enteric pathogen Salmonella enterica is one of the leading causes of foodborne illness in the world. The species is extremely diverse, containing more than 2,500 named serovars that are designated for their unique antigen characters and pathogenicity profiles—some are known to be virulent pathogens, while others are not. Questions regarding the evolution of pathogenicity, significance of antigen characters, diversity of clustered regularly interspaced short palindromic repeat (CRISPR) loci, among others, will remain elusive until a strong evolutionary framework is established. We present the first large-scale S. enterica subsp. enterica phylogeny inferred from a new reference-free k-mer approach of gathering single nucleotide polymorphisms (SNPs) from whole genomes. The phylogeny of 156 isolates representing 78 serovars (102 were newly sequenced) reveals two major lineages, each with many strongly supported sublineages. One of these lineages is the S. Typhi group; well nested within the phylogeny. Lineage-through-time analyses suggest there have been two instances of accelerated rates of diversification within the subspecies. We also found that antigen characters and CRISPR loci reveal different evolutionary patterns than that of the phylogeny, suggesting that a horizontal gene transfer or possibly a shared environmental acquisition might have influenced the present character distribution. Our study also shows the ability to extract reference-free SNPs from a large set of genomes and then to use these SNPs for phylogenetic reconstruction. This automated, annotation-free approach is an important step forward for bacterial disease tracking and in efficiently elucidating the evolutionary history of highly clonal organisms.


Journal of Dairy Science | 2009

Dynamics of endemic infectious diseases of animal and human importance on three dairy herds in the northeastern United States.

Abani K. Pradhan; J.S. Van Kessel; Jeffrey S. Karns; D.R. Wolfgang; Ernest Hovingh; K.A. Nelen; J.M. Smith; Robert H. Whitlock; Terry L. Fyock; S. Ladely; Paula J. Fedorka-Cray; Y.H. Schukken

Endemic infectious diseases in dairy cattle are of significant concern to the industry as well as for public health because of their potential impact on animal and human health, milk and meat production, food safety, and economics. We sought to provide insight into the dynamics of important endemic infectious diseases in 3 northeastern US dairy herds. Fecal samples from individual cows and various environmental samples from these farms were tested for the presence of major zoonotic pathogens (i.e., Salmonella, Campylobacter, and Listeria) as well as commensal bacteria Escherichia coli and enterococci. Additionally, the presence of Mycobacterium avium ssp. paratuberculosis was tested in fecal and serum samples from individual cows. Test results and health and reproductive records were maintained in a database, and fecal, plasma, DNA, and tissue samples were kept in a biobank. All bacteria of interest were detected on these farms and their presence was variable both within and between farms. The prevalence of Listeria spp. and L. monocytogenes in individual fecal samples within farm A ranged from 0 to 68.2% and 0 to 25.5%, respectively, over a period of 3 yr. Within farm B, continuous fecal shedding of Salmonella spp. was observed with a prevalence ranging from 8 to 88%; Salmonella Cerro was the predominant serotype. Farm C appeared less contaminated with Salmonella and Listeria, although in the summer of 2005, 50 and 19.2% of fecal samples were positive for Listeria and L. monocytogenes, respectively. The high prevalence of E. coli (89 to 100%), Enterococcus (75 to 100%), and Campylobacter (0 to 81%) in feces suggested they were ubiquitous throughout the farm environment. Fecal culture and ELISA results indicated a low prevalence of Mycobacterium avium ssp. paratuberculosis infection in these farms (0 to 13.6% and 0 to 4.9% for culture-positive and ELISA-positive, respectively), although the occasional presence of high shedders was observed. Results have major implications for food safety and epidemiology by providing a better understanding of infectious disease dynamics on dairy farms. Comprehensive understanding of these infections may lead to better farm management practices and pathogen reduction programs to control and reduce the on-farm contamination of these pathogens and to prevent their further entry into the food-chain.


Applied and Environmental Microbiology | 2009

Molecular Ecology of Listeria monocytogenes: Evidence for a Reservoir in Milking Equipment on a Dairy Farm

Alejandra A. Latorre; Jo Ann S. Van Kessel; Jeffrey S. Karns; Michael J. Zurakowski; Abani K. Pradhan; Ruth N. Zadoks; Kathryn J. Boor; Y.H. Schukken

ABSTRACT A longitudinal study aimed to detect Listeria monocytogenes on a New York State dairy farm was conducted between February 2004 and July 2007. Fecal samples were collected every 6 months from all lactating cows. Approximately 20 environmental samples were obtained every 3 months. Bulk tank milk samples and in-line milk filter samples were obtained weekly. Samples from milking equipment and the milking parlor environment were obtained in May 2007. Fifty-one of 715 fecal samples (7.1%) and 22 of 303 environmental samples (7.3%) were positive for L. monocytogenes. A total of 73 of 108 in-line milk filter samples (67.6%) and 34 of 172 bulk tank milk samples (19.7%) were positive for L. monocytogenes. Listeria monocytogenes was isolated from 6 of 40 (15%) sampling sites in the milking parlor and milking equipment. In-line milk filter samples had a greater proportion of L. monocytogenes than did bulk tank milk samples (P < 0.05) and samples from other sources (P < 0.05). The proportion of L. monocytogenes-positive samples was greater among bulk tank milk samples than among fecal or environmental samples (P < 0.05). Analysis of 60 isolates by pulsed-field gel electrophoresis (PFGE) yielded 23 PFGE types after digestion with AscI and ApaI endonucleases. Three PFGE types of L. monocytogenes were repeatedly found in longitudinally collected samples from bulk tank milk and in-line milk filters.


Biosensors and Bioelectronics | 2011

Detection of E. coli O157:H7 by immunomagnetic separation coupled with fluorescence immunoassay

Peixuan Zhu; Daniel R. Shelton; Shuhong Li; Daniel L. Adams; Jeffrey S. Karns; Platte T. Amstutz; Cha-Mei Tang

Conventional culture-based methods for detection of E. coli O157:H7 in foods and water sources are time-consuming, and results can be ambiguous, requiring further confirmation by biochemical testing and PCR. A rapid immunoassay prior to cultivation to identify presumptive positive sample would save considerable time and resources. Immunomagnetic separation (IMS) techniques are routinely used for isolation of E. coli O157:H7 from enriched food and water samples, typically in conjunction with cultural detection followed by biochemical and serological confirmation. In this study, we developed a new method that combines IMS with fluorescence immunoassay, termed immunomagnetic fluorescence assay (IMFA), for the detection of E. coli O157:H7. E. coli O157:H7 cells were first captured by anti-O157 antibody-coated magnetic beads and then recognized by a fluorescent detector antibody, forming an immunosandwich complex. This complex was subsequently dissociated for measurement of fluorescence intensity with Signalyte™-II spectrofluorometer. Experiments were conducted to evaluate both linearity and sensitivity of the assay. Capture efficiencies were greater than 98%, as determined by cultural plating and quantitative real-time PCR, when cell concentrations were <10(5) cells/mL. Capture efficiency decreased at higher cell concentrations, due to the limitation of bead binding capacity. At lower cell concentrations (10-10(4) cells/mL), the fluorescence intensity of dissociated Cy5 solution was highly correlated with E. coli 157:H7 cell concentrations. The detection limit was 10 CFU per mL of water. The assay can be completed in less than 3 h since enrichment is not required, as compared to existing techniques that typically require a 24 h incubation for pre-enrichment, followed by confirmatory tests.


Applied and Environmental Microbiology | 2001

Quantitative Detection of Escherichia coli O157 in Surface Waters by Using Immunomagnetic Electrochemiluminescence

Daniel R. Shelton; Jeffrey S. Karns

ABSTRACT A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 101 to 105 cells ml−1 in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 108 cells of a non-O157 strain of E. coli ml−1. Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 102 to 105E. coli O157 cells ml of concentrated water−1. To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water−1, 25 cells 100 ml of 100-fold concentrated water−1, or 1 to 2 viable cells liter−1 with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.

Collaboration


Dive into the Jeffrey S. Karns's collaboration.

Top Co-Authors

Avatar

Daniel R. Shelton

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jo Ann S. Van Kessel

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

J.S. Van Kessel

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest Hovingh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

D.R. Wolfgang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Bradd J. Haley

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yakov A. Pachepsky

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Michael L. Perdue

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge