Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Skinner is active.

Publication


Featured researches published by Jeffrey S. Skinner.


Molecular Genetics and Genomics | 2005

Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat

Daolin Fu; Péter Szűcs; Liuling Yan; Marcelo Helguera; Jeffrey S. Skinner; Jarislav von Zitzewitz; Patrick M. Hayes; Jorge Dubcovsky

The broad adaptability of wheat and barley is in part attributable to their flexible growth habit, in that spring forms have recurrently evolved from the ancestral winter growth habit. In diploid wheat and barley growth habit is determined by allelic variation at the VRN-1 and/or VRN-2 loci, whereas in the polyploid wheat species it is determined primarily by allelic variation at VRN-1. Dominant Vrn-A1 alleles for spring growth habit are frequently associated with mutations in the promoter region in diploid wheat and in the A genome of common wheat. However, several dominant Vrn-A1, Vrn-B1, Vrn-D1 (common wheat) and Vrn-H1 (barley) alleles show no polymorphisms in the promoter region relative to their respective recessive alleles. In this study, we sequenced the complete VRN-1 gene from these accessions and found that all of them have large deletions within the first intron, which overlap in a 4-kb region. Furthermore, a 2.8-kb segment within the 4-kb region showed high sequence conservation among the different recessive alleles. PCR markers for these deletions showed that similar deletions were present in all the accessions with known Vrn-B1 and Vrn-D1 alleles, and in 51 hexaploid spring wheat accessions previously shown to have no polymorphisms in the VRN-A1 promoter region. Twenty-four tetraploid wheat accessions had a similar deletion in VRN-A1 intron 1. We hypothesize that the 2.8-kb conserved region includes regulatory elements important for the vernalization requirement. Epistatic interactions between VRN-H2 and the VRN-H1 allele with the intron 1 deletion suggest that the deleted region may include a recognition site for the flowering repression mediated by the product of the VRN-H2 gene of barley.


Plant Molecular Biology | 2005

Molecular and structural characterization of barley vernalization genes

Jarislav von Zitzewitz; Péter Szűcs; Jorge Dubcovsky; Liuling Yan; Enrico Francia; N. Pecchioni; Ana M. Casas; Tony H. H. Chen; Patrick M. Hayes; Jeffrey S. Skinner

Vernalization, the requirement of a period of low temperature to induce transition from the vegetative to reproductive state, is an evolutionarily and economically important trait in the Triticeae. The genetic basis of vernalization in cultivated barley (Hordeum vulgare subsp. vulgare) can be defined using the two-locus VRN-H1/VRN-H2 model. We analyzed the allelic characteristics of HvBM5A, the candidate gene for VRN-H1, from ten cultivated barley accessions and one wild progenitor accession (subsp. spontaneum), representing the three barley growth habits – winter, facultative, and spring. We present multiple lines of evidence, including sequence, linkage map location, and expression, that support HvBM5A being VRN-H1. While the predicted polypeptides from different growth habits are identical, spring accessions contain a deletion in the first intron of HvBM5A that may be important for regulation. While spring HvBM5A alleles are typified by the intron-localized deletion, in some cases, the promoter may also determine the allele type. The presence/absence of the tightly linked ZCCT-H gene family members on chromosome 4H perfectly correlates with growth habit and we conclude that one of the three ZCCT-H genes is VRN-H2. The VRN-H2 locus is present in winter genotypes and deleted from the facultative and spring genotypes analyzed in this study, suggesting the facultative growth habit (cold tolerant, vernalization unresponsive) is a result of deletion of the VRN-H2 locus and presence of a winter HvBM5A allele. All reported barley vernalization QTLs can be explained by the two-locus VRN-H1/VRN-H2 model based on the presence/absence of VRN-H2 and a winter vs. spring HvBM5A allele.


Plant Molecular Biology | 2005

Structural, functional, and phylogenetic characterization of a large CBF gene family in barley

Jeffrey S. Skinner; Jarislav von Zitzewitz; Péter Szűcs; Luis Marquez-Cedillo; Tanya Filichkin; Keenan L. Amundsen; Eric J. Stockinger; Michael F. Thomashow; Tony H. H. Chen; Patrick M. Hayes

CBFs are key regulators in the Arabidopsis cold signaling pathway. We used Hordeum vulgare (barley), an important crop and a diploid Triticeae model, to characterize the CBF family from a low temperature tolerant cereal. We report that barley contains a large CBF family consisting of at least 20 genes (HvCBFs) comprising three multigene phylogenetic groupings designated the HvCBF1-, HvCBF3-, and HvCBF4-subgroups. For the HvCBF1- and HvCBF3-subgroups, there are comparable levels of phylogenetic diversity among rice, a cold-sensitive cereal, and the cold-hardy Triticeae. For the HvCBF4-subgroup, while similar diversity levels are observed in the Triticeae, only a single ancestral rice member was identified. The barley CBFs share many functional characteristics with dicot CBFs, including a general primary domain structure, transcript accumulation in response to cold, specific binding to the CRT motif, and the capacity to induce cor gene expression when ectopically expressed in Arabidopsis. Individual HvCBF genes differed in response to abiotic stress types and in the response time frame, suggesting different sets of HvCBF genes are employed relative to particular stresses. HvCBFs specifically bound monocot and dicot cor gene CRT elements in vitro under both warm and cold conditions; however, binding of HvCBF4-subgroup members was cold dependent. The temperature-independent HvCBFs activated cor gene expression at warm temperatures in transgenic Arabidopsis, while the cold-dependent HvCBF4-subgroup members of three Triticeae species did not. These results suggest that in the Triticeae – as in Arabidopsis – members of the CBF gene family function as fundamental components of the winter hardiness regulon.


Theoretical and Applied Genetics | 2004

Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map

Enrico Francia; Fulvia Rizza; Luigi Cattivelli; A. M. Stanca; Gábor Galiba; B. Tóth; Patrick M. Hayes; Jeffrey S. Skinner; N. Pecchioni

Barley (Hordeum vulgare subsp. vulgare) is an economically important diploid model for the Triticeae; and a better understanding of low-temperature tolerance mechanisms could significantly improve the yield of fall-sown cereals. We developed a new resource for genetic analysis of winter hardiness-related traits, the ‘Nure’ × ‘Tremois’ linkage map, based on a doubled-haploid population that is segregating for low-temperature tolerance and vernalization requirement. Three measures of low-temperature tolerance and one measure of vernalization requirement were used and, for all traits, QTLs were mapped on chromosome 5H. The vernalization response QTL coincides with previous reports at the Vrn-1/Fr1 region of the Triticeae. We also found coincident QTLs at this position for all measures of low-temperature tolerance. Using Composite Interval Mapping, a second proximal set, of coincident QTLs for low-temperature tolerance, and the accumulation of two different COR proteins (COR14b and TMC-Ap3) was identified. The HvCBF4 locus, or another member of the CBF loci clustered in this region, is the candidate gene underlying this QTL. There is a CRT/DRE recognition site in the promoter of cor14b with which a CBF protein could interact. These results support the hypothesis that highly conserved regulatory factors, such as members of the CBF gene family, may regulate the stress responses of a wide range of plant species.


Molecular Genetics and Genomics | 2007

Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity

P. Szucs; Jeffrey S. Skinner; Ildikó Karsai; Alfonso Cuesta-Marcos; Kale G. Haggard; Ann Corey; Tony H. H. Chen; Patrick M. Hayes

The epistatic interaction of alleles at the VRN-H1 and VRN-H2 loci determines vernalization sensitivity in barley. To validate the current molecular model for the two-locus epistasis, we crossed homozygous vernalization-insensitive plants harboring a predicted “winter type” allele at either VRN-H1 (Dicktoo) or VRN-H2 (Oregon Wolfe Barley Dominant), or at both VRN-H (Calicuchima-sib) loci and measured the flowering time of unvernalized F2 progeny under long-day photoperiod. We assessed whether the spring growth habit of Calicuchima-sib is an exception to the two-locus epistatic model or contains novel “spring” alleles at VRN-H1 (HvBM5A) and/or VRN-H2 (ZCCT-H) by determining allele sequence variants at these loci and their effects relative to growth habit. We found that (a) progeny with predicted “winter type” alleles at both VRN-H1 and VRN-H2 alleles exhibited an extremely delayed flowering (i.e. vernalization-sensitive) phenotype in two out of the three F2 populations, (b) sequence flanking the vernalization critical region of HvBM5A intron 1 likely influences degree of vernalization sensitivity, (c) a winter habit is retained when ZCCT-Ha has been deleted, and (d) the ZCCT-H genes have higher levels of allelic polymorphism than other winterhardiness regulatory genes. Our results validate the model explaining the epistatic interaction of VRN-H2 and VRN-H1 under long-day conditions, demonstrate recovery of vernalization-sensitive progeny from crosses of vernalization-insensitive genotypes, show that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, and provide molecular markers that are accurate predictors of “winter vs spring type” alleles at the VRN-H loci.


Theoretical and Applied Genetics | 2006

Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley

Péter Szűcs; Ildikó Karsai; J. von Zitzewitz; K. Mészáros; L. L. D. Cooper; Yongqiang Gu; Tony H. H. Chen; Patrick M. Hayes; Jeffrey S. Skinner

Winterhardiness has three primary components: photoperiod (day length) sensitivity, vernalization response, and low temperature tolerance. Photoperiod and vernalization regulate the vegetative to reproductive phase transition, and photoperiod regulates expression of key vernalization genes. Using two barley mapping populations, we mapped six individual photoperiod response QTL and determined their positional relationship to the phytochrome and cryptochrome photoreceptor gene families and the vernalization regulatory genes HvBM5A, ZCCT-H, and HvVRT-2. Of the six photoreceptors mapped in the current study (HvPhyA and HvPhyB to 4HS, HvPhyC to 5HL, HvCry1a and HvCry2 to 6HS, and HvCry1b to 2HL), only HvPhyC coincided with a photoperiod response QTL. We recently mapped the candidate genes for the 5HL VRN-H1 (HvBM5A) and 4HL VRN-H2 (ZCCT-H) loci, and in this study, we mapped HvVRT-2, the barley TaVRT-2 ortholog (a wheat flowering repressor regulated by vernalization and photoperiod) to 7HS. Each of these three vernalization genes is located in chromosome regions determining small photoperiod response QTL effects. HvBM5A and HvPhyC are closely linked on 5HL and therefore are currently both positional candidates for the same photoperiod effect. The coincidence of photoperiod-responsive vernalization genes with photoperiod QTL suggests vernalization genes should also be considered candidates for photoperiod effects.


Plant Cell and Environment | 2008

Ectopic AtCBF1 over‐expression enhances freezing tolerance and induces cold acclimation‐associated physiological modifications in potato

María Teresa Pino; Jeffrey S. Skinner; Zoran Jeknić; Patrick M. Hayes; Alfred H. Soeldner; Michael F. Thomashow; Tony H. H. Chen

We studied the effect of ectopic AtCBF over-expression on physiological alterations that occur during cold exposure in frost-sensitive Solanum tuberosum and frost-tolerant Solanum commersonii. Relative to wild-type plants, ectopic AtCBF1 over-expression induced expression of COR genes without a cold stimulus in both species, and imparted a significant freezing tolerance gain in both species: 2 degrees C in S. tuberosum and up to 4 degrees C in S. commersonii. Transgenic S. commersonii displayed improved cold acclimation potential, whereas transgenic S. tuberosum was still incapable of cold acclimation. During cold treatment, leaves of wild-type S. commersonii showed significant thickening resulting from palisade cell lengthening and intercellular space enlargement, whereas those of S. tuberosum did not. Ectopic AtCBF1 activity induced these same leaf alterations in the absence of cold in both species. In transgenic S. commersonii, AtCBF1 activity also mimicked cold treatment by increasing proline and total sugar contents in the absence of cold. Relative to wild type, transgenic S. commersonii leaves were darker green, had higher chlorophyll and lower anthocyanin levels, greater stomatal numbers, and displayed greater photosynthetic capacity, suggesting higher productivity potential. These results suggest an endogenous CBFpathway is involved in many of the structural, biochemical and physiological alterations associated with cold acclimation in these Solanum species.


Molecular Breeding | 2003

The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis

Jeffrey S. Skinner; Richard Meilan; Caiping Ma; Steven H. Strauss

We evaluated the utility of the promoter from the Populus PTD gene—homologous to the MADS box genes DEFICIENS and APETALA3—to genetically engineer reproductive sterility. Floral-predominant expression was confirmed via GUS reporter assays in two heterologous species (Arabidopsis and tobacco) and in an early-flowering poplar genotype. Using the PTD promoter to direct expression of the disarmed cytotoxin DTA resulted in sterile plants with otherwise normal growth at high frequency in all three species. Biomass production in greenhouse-grown, morphologically normal tobacco cytotoxin lines was indistinguishable from lines lacking the cytotoxin gene, confirming strong floral specificity of the promoter. These results suggest that the poplar PTD promoter may prove useful for transgene confinement without detrimental effects on yield.


Archive | 2000

Options for Genetic Engineering of Floral Sterility in Forest Trees

Jeffrey S. Skinner; Richard Meilan; Amy M. Brunner; Steven H. Strauss

Engineering of genetic sterility in transgenically modified trees destined for commercial uses will simplify compliance with regulatory guidelines and mitigate ecological concerns of transgene dispersal. It could also be a critical technology for reducing the rate of escape and invasive mobility of exotic plantation species. Added benefits may include increased biomass production by redirecting energy normally expended on reproduction, and elimination of nuisance pollen and fruits. We discuss the two basic strategies for genetically engineering reproductive sterility; 1) suppression of reproductive gene expression and 2) genetic cell ablation of floral structures through the use of cytotoxins or gene products whose overexpression is detrimental to cell function. We also discuss various cytotoxins and inhibitors thereof that could be used to reverse sterility and enable traditional breeding.


Plant Molecular Biology | 2014

Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation.

Zoran Jeknić; Katherine A. Pillman; Taniya Dhillon; Jeffrey S. Skinner; Ottó Veisz; Alfonso Cuesta-Marcos; Patrick M. Hayes; Andrew K. Jacobs; Tony H. H. Chen; Eric J. Stockinger

C-Repeat Binding Factors (CBFs) are DNA-binding transcriptional activators of gene pathways imparting freezing tolerance. Poaceae contain three CBF subfamilies, two of which, HvCBF3/CBFIII and HvCBF4/CBFIV, are unique to this taxon. To gain mechanistic insight into HvCBF4/CBFIV CBFs we overexpressed Hv-CBF2A in spring barley (Hordeum vulgare) cultivar ‘Golden Promise’. The Hv-CBF2A overexpressing lines exhibited stunted growth, poor yield, and greater freezing tolerance compared to non-transformed ‘Golden Promise’. Differences in freezing tolerance were apparent only upon cold acclimation. During cold acclimation freezing tolerance of the Hv-CBF2A overexpressing lines increased more rapidly than that of ‘Golden Promise’ and paralleled the freezing tolerance of the winter hardy barley ‘Dicktoo’. Transcript levels of candidate CBF target genes, COR14B and DHN5 were increased in the overexpressor lines at warm temperatures, and at cold temperatures they accumulated to much higher levels in the Hv-CBF2A overexpressors than in ‘Golden Promise’. Hv-CBF2A overexpression also increased transcript levels of other CBF genes at FROST RESISTANCE-H2-H2 (FR-H2) possessing CRT/DRE sites in their upstream regions, the most notable of which was CBF12. CBF12 transcript levels exhibited a relatively constant incremental increase above levels in ‘Golden Promise’ both at warm and cold. These data indicate that Hv-CBF2A activates target genes at warm temperatures and that transcript accumulation for some of these targets is greatly enhanced by cold temperatures.

Collaboration


Dive into the Jeffrey S. Skinner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven H. Strauss

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathleen Ma

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Francia

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge