Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Taube is active.

Publication


Featured researches published by Jeffrey S. Taube.


The Journal of Neuroscience | 1995

Head Direction Cells Recorded in the Anterior Thalamic Nuclei of Freely Moving Rats

Jeffrey S. Taube

Metabotropic glutamate receptors (mGluRs) are critically involved in the maintenance of long-term potentiation (LTP) (Reymann and Matthies, 1989; Behnisch et al., 1991; Izumi et al., 1991; Bashir et al., 1993). In order to assess further the physiological role of MGluRs in LTP, we injected freely moving rats with the recently available, competitive mGluR antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) intraventricularly and recorded extracellularly the population spike (PS) as well as the field excitatory postsynaptic potential (fEPSP) of the granule cells of the dentate gyrus in response to stimulation of fibers of the perforant path. MCPG was administered in two concentrations (A = 20 mM/5 microliters; B = 200 mM/5 microliters) either 30 min prior to or 5 min after LTP induction. Sodium chloride infusion served as a control. Normal synaptic transmission was not altered by MCPG. However, the mGluR antagonist inhibited LTP in a concentration-dependent manner. Concentration A did not influence the potentiation shortly after the tetanus. In the PS, short-term potentiation (STP), which is decremental in its time course, occurred normally, but in contrast to controls the potentiation declined back to baseline values after 2–3 hr. This dose also reduced the posttetanic increase in the slope function of the fEPSP, and led to a time course of potentiation similar to that for the PS. Concentration B completely abolished the tetanus-induced potentiation. This block was similar to that obtained for the NMDA antagonist 2-amino-5-phosphonopentanoate (AP5). Both MCPG concentrations had no influence on the time course of preestablished LTP. These effects seem to be due to the action of the (+)-isomer of MCPG, since intracerebroventricular application of the (- )-isomer was without effect on the duration and magnitude of LTP. In addition, we were interested in the mGluR subtypes involved in the blocking mechanism of MCPG. 1S,3R-aminocyclopentane-1,3-dicarboxic acid (ACPD)-activated PPI hydrolysis in hippocampal slices was competitively inhibited by MCPG at a concentration of 1 mM or higher. In contrast, this concentration of MCPG did not affect the reduction of forskolin- stimulated cAMP formation by ACPD. These results corroborate recent findings that mGluRs are required for the induction of LTP in CA1 and CA3 in vitro (Bashir et al., 1993; Sergueeva et al., 1993) and in vivo (Riedel and Reymann, 1993). The process of STP is found to be independent of mGluR activation.(ABSTRACT TRUNCATED AT 400 WORDS)


Progress in Neurobiology | 1998

Head direction cells and the neurophysiological basis for a sense of direction.

Jeffrey S. Taube

Animals require two types of fundamental information for accurate navigation: location and directional heading. Current theories hypothesize that animals maintain a neural representation, or cognitive map, of external space in the brain. Whereas cells in the rat hippocampus and parahippocampal regions encode information about location, a second type of allocentric spatial cell encodes information about the animals directional heading, independent of the animals on-going behaviors. These head direction (HD) cells are found in several areas of the classic Papez circuit. This review focuses on experimental studies conducted on HD cells and describes their discharge properties, functional significance, role in path integration, and responses to different environmental manipulations. The anterior dorsal thalamic nucleus appears critical for the generation of the directional signal. Both motor and vestibular cues also play important roles in the signals processing. The neural network models proposed to account for HD cell firing are compared with known empirical findings. Examples from clinical cases of patients with topographical disorientation are also discussed. It is concluded that studying the neural mechanisms underlying the HD signal provides an excellent opportunity for understanding how the mammalian nervous system processes a high level cognitive signal.


Behavioral Neuroscience | 1998

Cue control and head direction cells

Jeremy P. Goodridge; Paul A. Dudchenko; Kimberly A. Worboys; Edward J. Golob; Jeffrey S. Taube

Previous research has shown that head direction (HD) cells in both the anterior dorsal thalamus (ADN) and the postsubiculum (PoS) in rats discharge in relation to familiar, visual landmarks in the environment. This study assessed whether PoS and ADN HD cells would be similarly responsive to nonvisual or unfamiliar environmental cues. After visual input was eliminated by blindfolding the rats, HD cells maintained direction-specific discharge, but their preferred firing directions became less stable. In addition, rotations of the behavioral apparatus indicated that some nonvisual cues (presumably tactile, olfactory, or both) exerted above chance stimulus control over a cells preferred firing direction. However, a prominent auditory cue was not effective in exerting stimulus control over a cells preferred direction. HD cell activity also was assessed after rotation of a novel visual cue exposed to the rat for 1, 3, or 8 min. An 8-min exposure was enough time for a novel visual cue to gain control over a cells preferred direction, whereas an exposure of 1 or 3 min led to control in only about half the sessions. These latter results indicate that HD cells rely on a rapid learning mechanism to develop associations with landmark cues.


Brain Research Bulletin | 1996

Processing the head direction cell signal: A review and commentary

Jeffrey S. Taube; Jeremy P. Goodridge; Edward J. Golob; Paul A. Dudchenko; Robert W. Stackman

Animals require information about their location and directional heading in order to navigate. Directional information is provided by a population of cells in the postsubiculum and the anterior thalamic nuclei that encode a very accurate, continual representation of the animals directional heading in the horizontal plane, which is independent of the animals location. Recent studies indicate that this signal 1) arises either in the anterior thalamic nuclei or in structures upstream from it; 2) is not dependent on an intact hippocampus; 3) receives sensory inputs from both idiothetic and landmark systems; and 4) correlates well with the animals behavior in a spatial reference memory task. Furthermore, HD cells in the anterior thalamic nuclei appear to encode what the animals directional heading will be about 40 ms in the future, while HD cells in the postsubiculum encode the animals current directional heading. Both the electrophysiological and anatomical data suggest that the anterior thalamic nuclei and/or the lateral mammillary nuclei may be the sites of convergence for spatial information derived from landmarks and internally-generated cues. Current evidence also indicates that the vestibular system plays a crucial role in the generation of the HD cell signal. However, the notion that the vestibular system is the sole contributor to the signal generator is difficult to reconcile with several findings; these latter findings are better accounted for with a motor efference copy signal.


Current Opinion in Neurobiology | 1996

Head direction cells: properties and functional significance

Robert U. Muller; James B. Ranck; Jeffrey S. Taube

The strong signal carried by head direction cells in the postsubiculum complements the positional signal carried by hippocampal place cells; together, the directional and positional signals provide the information necessary to permit rats to generate and carry out intelligent, efficient solutions to spatial problems. Our opinion is that the hippocampal positional system acts as a cognitive map and that the role of the directional system is to put the map into register with the environment. In this way, paths found using the map can be properly executed. Head direction cells have recently been discovered in parts of the thalamus reciprocally connected with the postsubiculum; such cells provide important clues to the organization of the directional system.


Behavioral Neuroscience | 1995

Preferential use of the landmark navigational system by head direction cells in rats

Jeremy P. Goodridge; Jeffrey S. Taube

Previous studies have identified a population of cells recorded in the postsubiculum and the anterior thalamic nucleus (ATN) that discharge as a function of an animals head direction (HD) in the horizontal plane. The present experiments monitored HD cell activity when rats were confronted with a situation in which directional information from internal sensory sources (e.g., proprioceptive, vestibular, or motor efference copy) conflicted with directional information derived from familiar, external landmarks. Results showed that when a salient, familiar cue was reintroduced to rats environment into a position that conflicted with the cells current firing direction, HD cells in both the ATN and the postsubiculum shifted their preferred direction to reflect their originally established orientation with this cue. This finding suggests that sensory inputs onto HD cells from external landmark cues are capable of overriding spatial information developed through internal sensory cues.


Behavioral and Neural Biology | 1992

Lesions of the rat postsubiculum impair performance on spatial tasks.

Jeffrey S. Taube; J. Patrick Kesslak; Carl W. Cotman

Previous studies have identified a population of neurons in the postsubiculum that discharge as a function of the rats head direction in the horizontal plane (Taube, Muller, & Ranck, 1990a). To assess the contribution of these cells in spatial learning, Long-Evans rats were tested in a variety of spatial and nonspatial tasks following bilateral electrolytic or neurotoxic lesions of the postsubiculum. Compared to unlesioned control animals, lesioned animals were impaired on two spatial tasks, a radial eight-arm maze task and a Morris water task, although the performance scores of both lesion groups improved over the course of behavioral testing. In contrast, lesioned animals were unimpaired on two nonspatial tasks, a cued version of the water maze task and a conditioned taste-aversion paradigm. In addition, lesioned animals showed transient hyperactivity in an open-field activity test. These results support the concept that neurons in the postsubiculum are part of a neural network involved in the processing of spatial information.


Journal of Experimental Psychology: Animal Behavior Processes | 1997

Effects of Repeated Disorientation on the Acquisition of Spatial Tasks in Rats: Dissociation Between the Appetitive Radial Arm Maze and Aversive Water Maze

Paul A. Dudchenko; Jeremy P. Goodridge; Dominic A. Seiterle; Jeffrey S. Taube

This study examined the effects of disorientation on the acquisition of different spatial reference memory tasks. In an appetitively motivated radial arm maze task in which 1 arm was consistently baited, rats that were disoriented before each trial were impaired in their ability to acquire the task relative to rats placed in a clear container and not disoriented. However, disoriented rats were able to learn a Morris water maze and a water version of the radial arm maze under similar training conditions, suggesting that the effects of disorientation may interact with the quality or quantity of motivation involved in a given task. These results suggest that appetitive and aversive spatial tasks are dissociable, and that any impairment that is due to disorientation is specific to the appetitive radial arm maze task.


Experimental Brain Research | 1993

Electrophysiological properties of neurons in the rat subiculum in vitro.

Jeffrey S. Taube

The present study determined the membrane and synaptic properties of neurons in the rat subiculum. Using the in vitro hippocampal slice preparation, intracellular recordings were obtained from 91 subicular neurons. Membrane properties and morphological characteristics were similar to those reported for hippocampal pyramidal neurons. Two categories of subicular neurons were distinguished based on their response to a depolarizing current pulse. One type of neuron showed bursting behavior and the second type was characterized as regular firing. Analysis of the charging functions during hyperpolarizing current pulses yielded a mean τ0 and τ1 for subicular neurons of about 13 ms and 0.60 ms, respectively. Using the model of an equivalent cylinder, the mean dendrite-to-soma conductance ratio (ρ) was estimated at 6.0 and electrotonic length constant (L) at 0.7. There was no difference in these values between bursting and regular firing neurons. Tetrodotoxin-resistant potentials (presumed calcium hump/spike) were evoked from bursting subicular neurons at lower current intensities than CA1 pyramidal neurons. Calcium humps could only be evoked from about half the regular firing subicular neurons. Subicular cells showed an excitatory/inhibitory postsynaptic potential (EPSP/IPSP) sequence in response to electrical stimulation in different layers of the CA1 area. An EPSP could also be evoked from stimulation of the superficial or deep layers of the presubiculum and was attributed to activation of entorhinal fibers of passage. At high stimulation intensity, an antidromic spike was often evoked following stimulation in the presubicular area or CA1 alveus. The evoked EPSPs were blocked by addition of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the bathing medium. In magnesium-free, CN-QX bathing solution, a longer lasting depolarization was recorded; this response was blocked by application of a N-methyl-d-aspartate (NMDA) receptor antagonist (AP5). Iontophoretic application of glutamate or quisqualate (10 mM) along the soma-dendritic axis of subicular neurons leads to either a short-latency depolarization or a burst of action potentials. Application of 10 mM GABA near the recording site usually produced a hyperpolarization, which, at times, was mixed with a depolarization. Mixed hyperpolarizing/depolarizing responses were observed when GABA was applied to the basal or apical dendritic areas. There were no significant differences in the synaptic properties or responses to drug application between bursting and regular firing neurons. These results indicate that subicular neurons (1) are composed of a heterogeneous population of cell types, (2) have similar electrical properties to other hippocampal principal neurons, (3) receive glutaminergic synapses from CA1 and entorhinal cortical neurons, (4) project to the presubicular area and fornix (via the alveus), (5) are inhibited by local circuit neurons, and (6) display complex responses to GABA.


Hippocampus | 1998

Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats.

Jeffrey S. Taube; Robert U. Muller

Single cells in the rat anterior thalamic nucleus (ATN) and postsubiculum (PoS) discharge as a function of the rats directional heading in the horizontal plane, independent of its location. A previous study that compared cell firing during clockwise and counterclockwise head turns concluded that ATN ‘head direction’ (HD) cell discharge anticipates the rats future directional heading, while PoS HD cell discharge is in register with the rats current directional heading (Blair and Sharp [1995] J Neurosci 15:6260–6270). In the current study we extend these findings by using a different method of analysis. HD cells in the ATN and PoS were first characterized by three different measures: peak firing rate, range width, and information content. We then examined how these measures varied when cell firing was aligned with past (negative time shift) or future (positive time shift) head direction of the rat. We report that all three measures were optimized when ATN cell firing was aligned with the animals future directional heading by about +23 msec. In contrast, PoS HD cell firing was optimized when cell firing was aligned with the rats past head direction by about ‐7 msec. When the optimal value was plotted as a function of the amount of time spikes were shifted relative to head orientation, the mean ATN function was shifted to the right of the PoS function only at negative time shifts; at positive time shifts the two functions overlapped. Analysis of two recording sessions from the same cell indicated that each cell in a particular brain area is ‘tuned’ to a specific time shift so that all cells within a brain area are not uniformly tuned to the same time shift. Other analyses showed that the clockwise and counterclockwise tuning functions were not skewed in the direction of the head turn as postulated by Redish et al. ([1996] Network: Computation in Neural Systems 7:671–685) and Blair et al. ([1997] J Neurophysiol 17:145–159). Additional analysis on episodes when the rat happened to continually point its head in the preferred direction indicated that HD cell firing undergoes little adaptation. In the Discussion, we argue that these results are best accounted for by a motor efference copy signal operating on both types of HD cells such that the copy associated with the PoS HD cells is delayed in time by about 30 msec relative to the copy associated with ATN HD cells. Hippocampus 1998; 8:87–108.

Collaboration


Dive into the Jeffrey S. Taube's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Stackman

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey L. Calton

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge