Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Urbach is active.

Publication


Featured researches published by Jeffrey S. Urbach.


Nature Neuroscience | 2004

A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients

William J. Rosoff; Jeffrey S. Urbach; Mark A. Esrick; Ryan McAllister; Linda J. Richards; Geoffrey J. Goodhill

Axonal chemotaxis is believed to be important in wiring up the developing and regenerating nervous system, but little is known about how axons actually respond to molecular gradients. We report a new quantitative assay that allows the long-term response of axons to gradients of known and controllable shape to be examined in a three-dimensional gel. Using this assay, we show that axons may be natures most-sensitive gradient detectors, but this sensitivity exists only within a narrow range of ligand concentrations. This assay should also be applicable to other biological processes that are controlled by molecular gradients, such as cell migration and morphogenesis.


Journal of Neurobiology | 1999

Theoretical analysis of gradient detection by growth cones

Geoffrey J. Goodhill; Jeffrey S. Urbach

Gradients of diffusible and substrate-bound molecules play an important role in guiding axons to appropriate targets in the developing nervous system. Although some of the molecules involved have recently been identified, little is known about the physical mechanisms by which growth cones sense gradients. This article applies the seminal Berg and Purcell (1977) model of gradient sensing to this problem. The model provides estimates for the statistical fluctuations in the measurement of concentration by a small sensing device. By assuming that gradient detection consists of the comparison of concentrations at two spatially or temporally separated points, the model therefore provides an estimate for the steepness of gradient that can be detected as a function of physiological parameters. The model makes the following specific predictions. (a) It is more likely that growth cones use a spatial rather than temporal sensing strategy. (b) Growth cone sensitivity increases with the concentration of ligand, the speed of ligand diffusion, the size of the growth cone, and the time over which it averages the gradient signal. (c) The minimum detectable gradient steepness for growth cones is roughly in the range 1-10%. (d) This value varies depending on whether a bound or freely diffusing ligand is being sensed, and on whether the sensing occurs in three or two dimensions. The model also makes predictions concerning the role of filopodia in gradient detection.


Physical Review E | 1999

Velocity distributions and density fluctuations in a granular gas.

J. S. Olafsen; Jeffrey S. Urbach

Velocity distributions in a vibrated granular monolayer are investigated experimentally. Non-Gaussian velocity distributions are observed at low vibration amplitudes but cross over smoothly to Gaussian distributions as the amplitude is increased. Cross-correlations between fluctuations in density and temperature are present only when the velocity distributions are strongly non-Gaussian. Confining the expansion of the granular layer results in non-Gaussian velocity distributions that persist to high vibration amplitudes.


Biophysical Journal | 2010

Size-Dependent Rheology of Type-I Collagen Networks

Richard Arevalo; Jeffrey S. Urbach; Daniel L. Blair

We investigate the system size-dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness. In addition, we demonstrate that the overall network failure is determined by the ratio of the gel thickness to the mesh size. These findings have broad implications for cell-matrix interactions, the interpretation of rheological tissue data, and the engineering of biomimetic scaffolds.


Physical Review Letters | 2002

Forcing and velocity correlations in a vibrated granular monolayer

Alexis Prevost; David A. Egolf; Jeffrey S. Urbach

The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anticorrelation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a Gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.


Physical Review Letters | 2005

Two-dimensional melting far from equilibrium in a granular monolayer.

J. S. Olafsen; Jeffrey S. Urbach

We report an experimental investigation of the transition from a hexagonally ordered solid phase to a disordered liquid in a monolayer of vibrated spheres. The transition occurs as the intensity of the vibration amplitude is increased. Measurements of the density of dislocations and the positional and orientational correlation functions show evidence for a dislocation-mediated continuous transition from a solid phase with long-range order to a liquid with only short-range order. The results show a strong similarity to simulations of melting of hard disks in equilibrium, despite the fact that the granular monolayer is far from equilibrium due to the effects of interparticle dissipation and the vibrational forcing.


Development | 2005

Adaptation is not required to explain the long-term response of axons to molecular gradients

Jun Xu; William J. Rosoff; Jeffrey S. Urbach; Geoffrey J. Goodhill

It has been suggested that growth cones navigating through the developing nervous system might display adaptation, so that their response to gradient signals is conserved over wide variations in ligand concentration. Recently however, a new chemotaxis assay that allows the effect of gradient parameters on axonal trajectories to be finely varied has revealed a decline in gradient sensitivity on either side of an optimal concentration. We show that this behavior can be quantitatively reproduced with a computational model of axonal chemotaxis that does not employ explicit adaptation. Two crucial components of this model required to reproduce the observed sensitivity are spatial and temporal averaging. These can be interpreted as corresponding, respectively, to the spatial spread of signaling effects downstream from receptor binding, and to the finite time over which these signaling effects decay. For spatial averaging, the model predicts that an effective range of roughly one-third of the extent of the growth cone is optimal for detecting small gradient signals. For temporal decay, a timescale of about 3 minutes is required for the model to reproduce the experimentally observed sensitivity.


Neural Computation | 2004

Predicting axonal response to molecular gradients with a computational model of filopodial dynamics

Geoffrey J. Goodhill; Ming Gu; Jeffrey S. Urbach

Axons are often guided to their targets in the developing nervous system by attractive or repulsive molecular concentration gradients. We propose a computational model for gradient sensing and directed movement of the growth cone mediated by filopodia. We show that relatively simple mechanisms are sufficient to generate realistic trajectories for both the short-term response of axons to steep gradients and the long-term response of axons to shallow gradients. The model makes testable predictions for axonal response to attractive and repulsive gradients of different concentrations and steepness, the size of the intracellular amplification of the gradient signal, and the differences in intracellular signaling required for repulsive versus attractive turning.


Physical Review E | 2004

Nonequilibrium two-phase coexistence in a confined granular layer

Alexis Prevost; Paul Melby; David A. Egolf; Jeffrey S. Urbach

We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found to coexist in steady state with a surrounding granular liquid. By analogy to equilibrium hard-sphere systems, the phase behavior may be explained through entropy maximization. However, dramatic nonequilibrium effects are present, including a significant difference in the granular temperatures of the two phases.


Science | 2008

Comment on "Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic"

Igor S. Aranson; Alexey Snezhko; J. S. Olafsen; Jeffrey S. Urbach

Narayan et al. (Reports, 6 July 2007, p. 105) reported giant number fluctuations attributed to curvature-driven active currents specific for nonequilibrium nematic systems. We present data demonstrating that similar results can be found in systems of spherical particles due either to inelastic clustering or persistent density inhomogeneity, suggesting two alternative explanations for their results.

Collaboration


Dive into the Jeffrey S. Urbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Rosoff

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge