Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Settleman is active.

Publication


Featured researches published by Jeffrey Settleman.


Nature | 2012

Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors

Timothy R. Wilson; Jane Fridlyand; Yibing Yan; Elicia Penuel; Luciana Burton; Emily Chan; Jing Peng; Eva Lin; Yulei Wang; Jeffrey A. Sosman; Antoni Ribas; Jiang Li; John Moffat; Daniel P. Sutherlin; Hartmut Koeppen; Mark Merchant; Richard M. Neve; Jeffrey Settleman

Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-‘addicted’ human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.


Cancer Discovery | 2012

EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib

Ryan B. Corcoran; Hiromichi Ebi; Alexa B. Turke; Erin M. Coffee; Michiya Nishino; Alexandria P. Cogdill; Ronald D. Brown; Patricia Della Pelle; Dora Dias-Santagata; Kenneth E. Hung; Keith T. Flaherty; Adriano Piris; Jennifer A. Wargo; Jeffrey Settleman; Mari Mino-Kenudson; Jeffrey A. Engelman

UNLABELLED BRAF mutations occur in 10-15% of colorectal cancers (CRCs) and confer adverse outcome. While RAF inhibitors such as vemurafenib (PLX4032) have proven effective in BRAF mutant melanoma, they are surprisingly ineffective in BRAF mutant CRCs, and the reason for this disparity remains unclear. Compared to BRAF mutant melanoma cells, BRAF mutant CRC cells were less sensitive to vemurafenib, and P-ERK suppression was not sustained in response to treatment. Although transient inhibition of phospho-ERK by vemurafenib was observed in CRC, rapid ERK re-activation occurred through EGFR-mediated activation of RAS and CRAF. BRAF mutant CRCs expressed higher levels of phospho-EGFR than BRAF mutant melanomas, suggesting that CRCs are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of MAPK signaling in BRAF mutant CRC cells and markedly improved efficacy in vitro and in vivo. These findings support evaluation of combined RAF and EGFR inhibition in BRAF mutant CRC patients. SIGNIFICANCE BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (~5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling

Ultan McDermott; Sreenath V. Sharma; L. Dowell; Patricia Greninger; Clara Montagut; Justin Lamb; Hannah L. Archibald; R. Raudales; Ah Ting Tam; Diana Y. Lee; Stephen M. Rothenberg; Jeffrey G. Supko; Raffaella Sordella; Lindsey E. Ulkus; Anthony John Iafrate; Shyamala Maheswaran; Ching Ni Njauw; Hensin Tsao; Lisa Drew; J. H. Hanke; Xiao Jun Ma; Mark G. Erlander; Nathanael S. Gray; Daniel A. Haber; Jeffrey Settleman

Kinase inhibitors constitute an important new class of cancer drugs, whose selective efficacy is largely determined by underlying tumor cell genetics. We established a high-throughput platform to profile 500 cell lines derived from diverse epithelial cancers for sensitivity to 14 kinase inhibitors. Most inhibitors were ineffective against unselected cell lines but exhibited dramatic cell killing of small nonoverlapping subsets. Cells with exquisite sensitivity to EGFR, HER2, MET, or BRAF kinase inhibitors were marked by activating mutations or amplification of the drug target. Although most cell lines recapitulated known tumor-associated genotypes, the screen revealed low-frequency drug-sensitizing genotypes in tumor types not previously associated with drug susceptibility. Furthermore, comparing drugs thought to target the same kinase revealed striking differences, predictive of clinical efficacy. Genetically defined cancer subsets, irrespective of tissue type, predict response to kinase inhibitors, and provide an important preclinical model to guide early clinical applications of novel targeted inhibitors.


Nature Medicine | 2012

Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer.

Clara Montagut; Alba Dalmases; Beatriz Bellosillo; Marta Crespo; Silvia Pairet; Mar Iglesias; Marta Salido; Manuel Gallen; Scot A. Marsters; Siao Ping Tsai; André E. Minoche; Somasekar Seshagiri; Sergi Serrano; Heinz Himmelbauer; Joaquim Bellmunt; Ana Rovira; Jeffrey Settleman; Francesc Bosch; Joan Albanell

Antibodies against epidermal growth factor receptor (EGFR)—cetuximab and panitumumab—are widely used to treat colorectal cancer. Unfortunately, patients eventually develop resistance to these agents. We describe an acquired EGFR ectodomain mutation (S492R) that prevents cetuximab binding and confers resistance to cetuximab. Cells with this mutation, however, retain binding to and are growth inhibited by panitumumab. Two of ten subjects studied here with disease progression after cetuximab treatment acquired this mutation. A subject with cetuximab resistance harboring the S492R mutation responded to treatment with panitumumab.


Cancer Cell | 2013

Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS Mutant Cancer Models

Ryan B. Corcoran; Katherine A. Cheng; Aaron N. Hata; Anthony C. Faber; Hiromichi Ebi; Erin M. Coffee; Patricia Greninger; Ronald D. Brown; Jason T. Godfrey; Travis J. Cohoon; Youngchul Song; Eugene Lifshits; Kenneth E. Hung; Toshi Shioda; Dora Dias-Santagata; Anurag Singh; Jeffrey Settleman; Cyril H. Benes; Mari Mino-Kenudson; Kwok-Kin Wong; Jeffrey A. Engelman

KRAS is the most commonly mutated oncogene, yet no effective targeted therapies exist for KRAS mutant cancers. We developed a pooled shRNA-drug screen strategy to identify genes that, when inhibited, cooperate with MEK inhibitors to effectively treat KRAS mutant cancer cells. The anti-apoptotic BH3 family gene BCL-XL emerged as a top hit through this approach. ABT-263 (navitoclax), a chemical inhibitor that blocks the ability of BCL-XL to bind and inhibit pro-apoptotic proteins, in combination with a MEK inhibitor led to dramatic apoptosis in many KRAS mutant cell lines from different tissue types. This combination caused marked in vivo tumor regressions in KRAS mutant xenografts and in a genetically engineered KRAS-driven lung cancer mouse model, supporting combined BCL-XL/MEK inhibition as a potential therapeutic approach for KRAS mutant cancers.


Science Translational Medicine | 2013

TORC1 Suppression Predicts Responsiveness to RAF and MEK Inhibition in BRAF-Mutant Melanoma

Ryan B. Corcoran; Stephen M. Rothenberg; Aaron N. Hata; Anthony C. Faber; Adriano Piris; Rosalynn M. Nazarian; Ronald D. Brown; Jason T. Godfrey; Daniel Winokur; John Walsh; Mari Mino-Kenudson; Shyamala Maheswaran; Jeffrey Settleman; Jennifer A. Wargo; Keith T. Flaherty; Daniel A. Haber; Jeffrey A. Engelman

Suppression of TORC1 activity after treatment with RAF or MEK inhibitors predicts drug sensitivity in BRAF-mutant melanoma and can be monitored in patients. Caveat mTOR In recent years, numerous new drugs have been developed to take advantage of specific molecular changes in cancer cells. Unfortunately, tumors are often a step ahead of the scientists, becoming resistant to these targeted drugs just when they seem to be working perfectly. Now, two groups of researchers have developed rational combination treatments that block resistance to targeted cancer drugs by inhibiting mTOR. Elkabets and coauthors were working on breast cancer, where the PIK3CA gene is frequently mutated. Inhibitors of PI3K (the protein product of PIK3CA) are currently in clinical trials, but some of the cancers are resistant to these drugs. The authors have discovered that breast cancers resistant to the PI3K inhibitor BYL719 had persistently active mTOR signaling, both in cultured cell lines and in patient tumors. Adding an mTOR inhibitor to the treatment regimen could reverse the resistance and kill the tumor cells. Corcoran et al. found a similar mTOR-dependent drug resistance mechanism to be active in melanoma as well. BRAF-mutant melanomas, the most common type, are frequently treated with RAF and MEK inhibitors, but only with mixed results, because melanomas quickly develop resistance to these drugs. Now, the authors have shown that drug-resistant melanomas also have persistent activation of mTOR, and adding an mTOR inhibitor to the treatment regimen can block drug resistance and kill the cancer cells. In both studies, the activation of mTOR in drug-resistant tumors has been confirmed in human patients, but the combination treatments have only been tested in cells and in mouse models thus far. Thus, the next critical step would be to confirm that adding mTOR inhibition to treatment regimens for these cancers is effective in the clinical setting as well. Some mTOR inhibitors are already available for use in patients, so hopefully soon mTOR activation will not be something to beware of, but something to monitor and target with specific drugs. RAF and MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase) inhibitors are effective in treating patients with BRAF-mutant melanoma. However, most responses are partial and short-lived, and many patients fail to respond at all. We found that suppression of TORC1 activity in response to RAF or MEK inhibitors, as measured by decreased phosphorylation of ribosomal protein S6 (P-S6), effectively predicted induction of cell death by the inhibitor in BRAF-mutant melanoma cell lines. In resistant melanomas, TORC1 activity was maintained after treatment with RAF or MEK inhibitors, in some cases despite robust suppression of mitogen-activated protein kinase (MAPK) signaling. In in vivo mouse models, suppression of TORC1 after MAPK inhibition was necessary for induction of apoptosis and tumor response. Finally, in paired biopsies obtained from patients with BRAF-mutant melanoma before treatment and after initiation of RAF inhibitor therapy, P-S6 suppression predicted significantly improved progression-free survival. Such a change in P-S6 could be readily monitored in real time by serial fine-needle aspiration biopsies, making quantitation of P-S6 a valuable biomarker to guide treatment in BRAF-mutant melanoma.


Cancer Research | 2010

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Stephen M. Rothenberg; Gayatry Mohapatra; Miguel Rivera; Daniel Winokur; Patricia Greninger; Mai Nitta; Peter M. Sadow; G. Sooriyakumar; Brian W. Brannigan; Matthew Ulman; Rushika M. Perera; Rui Wang; Ah Ting Tam; Xiao Jun Ma; Mark G. Erlander; Dennis C. Sgroi; James W. Rocco; Mark W. Lingen; Ezra E.W. Cohen; David N. Louis; Jeffrey Settleman; Daniel A. Haber

In a genome-wide screen of 684 cancer cell lines, we identified homozygous intragenic microdeletions involving genes encoding components of the apical-basal cell polarity complexes. Among these, PARD3 is disrupted in cell lines and primary tumors from squamous carcinomas and glioblastomas. Reconstituting PARD3 expression in both cell types restores tight junctions and retards contact-dependent proliferation. Searching specifically for small intragenic microdeletions using high-resolution genomic arrays may be complementary to other genomic deletion screens and resequencing efforts in identifying new tumor suppressor genes.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors

Anneleen Daemen; David Peterson; Nisebita Sahu; Ron McCord; Xiangnan Du; Bonnie Liu; Katarzyna Kowanetz; Rebecca Hong; John Moffat; Min Gao; Aaron Boudreau; Rana Mroue; Laura Corson; Thomas O’Brien; Jing Qing; Deepak Sampath; Mark Merchant; Robert L. Yauch; Gerard Manning; Jeffrey Settleman; Georgia Hatzivassiliou; Marie Evangelista

Significance Targeting cancer metabolism requires personalized diagnostics for clinical success. Pancreatic ductal adenocarcinoma (PDAC) is characterized by metabolism addiction. To identify metabolic dependencies within PDAC, we conducted broad metabolite profiling and identified three subtypes that showed distinct metabolite profiles associated with glycolysis, lipogenesis, and redox pathways. Importantly, these profiles significantly correlated with enriched sensitivity to a variety of metabolic inhibitors including inhibitors targeting glycolysis, glutaminolysis, lipogenesis, and redox balance. In primary PDAC tumor samples, the lipid subtype was strongly associated with an epithelial phenotype, whereas the glycolytic subtype was strongly associated with a mesenchymal phenotype, suggesting functional relevance in disease progression. Our findings will provide valuable predictive utility for a number of metabolic inhibitors currently undergoing phase I testing. Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors.


Cancer Research | 2014

AXL Inhibition Sensitizes Mesenchymal Cancer Cells to Antimitotic Drugs

Catherine Wilson; Xiaofen Ye; Thinh Q. Pham; Eva Lin; Sara M. Chan; Erin McNamara; Richard M. Neve; Lisa D. Belmont; Hartmut Koeppen; Robert L. Yauch; Avi Ashkenazi; Jeffrey Settleman

Molecularly targeted drug therapies have revolutionized cancer treatment; however, resistance remains a major limitation to their overall efficacy. Epithelial-to-mesenchymal transition (EMT) has been linked to acquired resistance to tyrosine kinase inhibitors (TKI), independent of mutational resistance mechanisms. AXL is a receptor tyrosine kinase associated with EMT that has been implicated in drug resistance and has emerged as a candidate therapeutic target. Across 643 human cancer cell lines that were analyzed, elevated AXL was strongly associated with a mesenchymal phenotype, particularly in triple-negative breast cancer and non-small cell lung cancer. In an unbiased screen of small-molecule inhibitors of cancer-relevant processes, we discovered that AXL inhibition was specifically synergistic with antimitotic agents in killing cancer cells that had undergone EMT and demonstrated associated TKI resistance. However, we did not find that AXL inhibition alone could overcome acquired resistance to EGFR TKIs in the EMT setting, as previously reported. These findings reveal a novel cotreatment strategy for tumors displaying mesenchymal features that otherwise render them treatment refractory.


PLOS ONE | 2013

High heregulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck.

David S. Shames; Juliet Carbon; Kim Walter; Adrian M. Jubb; Cleopatra Kozlowski; Tom Januario; Do An; Ling Fu; Yuanyuan Xiao; Rajiv Raja; Brittany Jiang; Ashi Malekafzali; Howard M. Stern; Jeffrey Settleman; Timothy R. Wilson; Garret Hampton; Robert L. Yauch; Andrea Pirzkall; Lukas Amler

Purpose Tumors with oncogenic dependencies on the HER family of receptor tyrosine kinases (RTKs) often respond well to targeted inhibition. Our previous work suggested that many cell lines derived from squamous cell carcinomas of the head and neck (SCCHNs) depend on autocrine signaling driven by HER2/3 dimerization and high-level co-expression of HRG. Additionally, results from a Phase I trial of MEHD7495A, a dual-action antibody that blocks ligand binding to EGFR and HER3, suggest that high-level HRG expression was associated with clinical response in SCCHN patients. Here we explore the hypothesis that high-level HRG expression defines a subpopulation of SCCHNs with activated HER3. Experimental Design qRT-PCR expression profiling was performed on >750 tumors of diverse origin, including >150 therapy-naïve, primary, and recurrent SCCHNs. Activated HER3, defined by immunoprecipitation of phospho-HER3, was compared to HRG expression in SCCHN samples. Paracrine versus autocrine expression was evaluated using RNA-in situ hybridization. Results SCCHN tumors express the highest levels of HRG compared to a diverse collection of other tumor types. We show that high HRG expression is associated with activated HER3, whereas low HRG expression is associated with low HER3 activation in SCCHN tumors. Furthermore, HRG expression is higher in recurrent SCCHN compared to patient-matched therapy naïve specimens. Conclusions HRG expression levels define a biologically distinct subset of SCCHN patients. We propose that high-level expression of HRG is associated with constitutive activation of HER3 in SCCHN and thus defines an actionable biomarker for interventions targeting HER3.

Collaboration


Dive into the Jeffrey Settleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raffaella Sordella

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daphne W. Bell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge