Jeffrey W. Doan
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey W. Doan.
Mitochondrion | 2011
Maik Hüttemann; Petr Pecina; Matthew Rainbolt; Thomas H. Sanderson; Valerian E. Kagan; Lobelia Samavati; Jeffrey W. Doan; Icksoo Lee
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Journal of Bioenergetics and Biomembranes | 2008
Maik Hüttemann; Icksoo Lee; Alena Pecinova; Petr Pecina; Karin Przyklenk; Jeffrey W. Doan
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system.
Biochimica et Biophysica Acta | 2012
Maik Hüttemann; Stefan Helling; Thomas H. Sanderson; Christopher Sinkler; Lobelia Samavati; Gargi Mahapatra; Ashwathy Varughese; Guorong Lu; Jenney Liu; Rabia Ramzan; Sebastian Vogt; Lawrence I. Grossman; Jeffrey W. Doan; Katrin Marcus; Icksoo Lee
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.
Advances in Experimental Medicine and Biology | 2012
Maik Hüttemann; Icksoo Lee; Lawrence I. Grossman; Jeffrey W. Doan; Thomas H. Sanderson
The mitochondrial oxidative phosphorylation (OxPhos) system not only generates the vast majority of cellular energy, but is also involved in the generation of reactive oxygen species (ROS), and apoptosis. Cytochrome c (Cytc) and cytochrome c oxidase (COX) represent the terminal step of the electron transport chain (ETC), the proposed rate-limiting reaction in mammals. Cytc and COX show unique regulatory features including allosteric regulation, isoform expression, and regulation through cell signaling pathways. This chapter focuses on the latter and discusses all mapped phosphorylation sites based on the crystal structures of COX and Cytc. Several signaling pathways have been identified that target COX including protein kinase A and C, receptor tyrosine kinase, and inflammatory signaling. In addition, four phosphorylation sites have been mapped on Cytc with potentially large implications due to its multiple functions including apoptosis, a pathway that is overactive in stressed cells but inactive in cancer. The role of COX and Cytc phosphorylation is reviewed in a human disease context, including cancer, inflammation, sepsis, asthma, and ischemia/reperfusion injury as seen in myocardial infarction and ischemic stroke.
The FASEB Journal | 2012
Maik Hüttemann; Icksoo Lee; Xiufeng Gao; Petr Pecina; Alena Pecinova; Jenney Liu; Siddhesh Aras; Natascha Sommer; Thomas H. Sanderson; Monica Tost; Frauke Neff; Juan Antonio Aguilar-Pimentel; Lore Becker; Beatrix Naton; Birgit Rathkolb; Jan Rozman; Jack Favor; Wolfgang Hans; Cornelia Prehn; Oliver Puk; Anja Schrewe; Minxuan Sun; Heinz Höfler; Jerzy Adamski; Raffi Bekeredjian; Jochen Graw; Thure Adler; Dirk H. Busch; Martin Klingenspor; Thomas Klopstock
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung‐specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2‐knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2‐knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2‐knockout mice, lung COX activity and cellular ATP levels were significantly reduced (—50 and — 29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced Penh and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot‐Leyden crystals. In addition, there was an interesting sex‐specific phenotype, in which the knockout females showed reduced lean mass (—12%), reduced total oxygen consumption rate (—8%), improved glucose tolerance, and reduced grip force (—14%) compared to wild‐type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long‐term lung pathology develops in the knockout mice due to impairment of energy‐costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.—Hüttemann, M., Lee, I., Gao, X., Pecina, P., Pecinova, A., Liu, J., Aras, S., Sommer, N., Sanderson, T. H., Tost, M., Neff, F., Aguilar‐Pimentel, J. A., Becker, L., Naton, B., Rathkolb, B., Rozman, J., Favor, J., Hans, W., Prehn, C., Puk, O., Schrewe, A., Sun, M., Höfler, H., Adamski, J., Bekeredjian, R., Graw, J., Adler, T., Busch, D. H., Klingenspor, M., Klopstock, T., Ollert, M., Wolf, E., Fuchs, H., Gailus‐Durner, V., Hrabě de Angelis, M., Weissmann, N., Doan, J. W., Bassett, D. J. P., Grossman, L. I. Cytochrome c oxidase subunit 4 isoform 2‐knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB J. 26, 3916–3930 (2012). www.fasebj.org
Journal of Molecular Evolution | 2003
Timothy R. Schmidt; Jeffrey W. Doan; Morris Goodman; Lawrence I. Grossman
Cytochrome c oxidase (COX), the terminal enzyme complex of the electron transport chain, contains 13 subunits, 3 encoded by mitochondrial DNA and 10 by nuclear. Several of the nuclear subunits, including subunit VIIa, are known to have two tissue- and development-specific isoforms in mammals. A recently identified third member of the gene family, COX7AR, encodes a protein previously thought to function in mitochondria. However, observation of fluorescent pCOX7AR C-terminal fusion proteins in HeLa cells showed that pCOX7AR is localized to the Golgi apparatus. Sequence analyses indicate that the duplication of COX7AR occurred prior to the origin of the Euteleostomi (bony vertebrates) and that pCOX7AR is more highly conserved than the two other isoforms. These results indicate that, after gene duplication and modification of the mitochondrial targeting signal, pCOX7AR was evolutionarily altered to a new and apparently important function in the Golgi. These results also suggest that predictions of function from homology can be misleading and show that specialization and modification of subcellular localization are similar to cis-element subfunctionalization. In cis-element subfunctionalization, complementary null mutations occur to the cis-elements of the descendents of a gene duplication, causing both descendent genes to be obligate. In the process described in this paper, which could be termed subcellular subfunctionalization, complementary null mutations can occur to the subcellular localization signals of the descendants of a gene duplication, causing both descendent genes to be similarly obligate. Noncomplementary null mutations could also uncover an alternate localization, which is the more likely case for pCOX7AR.
Biochimica et Biophysica Acta | 2007
Maik Hüttemann; Icksoo Lee; Lobelia Samavati; Hong Yu; Jeffrey W. Doan
Biochemistry | 2006
Icksoo Lee; Arthur R. Salomon; Kebing Yu; Jeffrey W. Doan; Lawrence I. Grossman; Maik Hüttemann
Molecular Phylogenetics and Evolution | 2004
Jeffrey W. Doan; Timothy R. Schmidt; Derek E. Wildman; Monica Uddin; Allon Goldberg; Maik Hüttemann; Morris Goodman; Mark L. Weiss; Lawrence I. Grossman
Mitochondrion | 2012
Maik Hüttemann; Scott E. Klewer; Icksoo Lee; Alena Pecinova; Petr Pecina; Jenney Liu; Michael Lee; Jeffrey W. Doan; Douglas F. Larson; Elise Slack; Bita Maghsoodi; Robert P. Erickson; Lawrence I. Grossman