Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey W. Koehler is active.

Publication


Featured researches published by Jeffrey W. Koehler.


PLOS ONE | 2013

Evaluation of Inhibitor-Resistant Real-Time PCR Methods for Diagnostics in Clinical and Environmental Samples

Adrienne T. Hall; Ashley McKay Zovanyi; Deanna R. Christensen; Jeffrey W. Koehler; Timothy D. Minogue

Polymerase chain reaction (PCR) is commonly used for pathogen detection in clinical and environmental samples. These sample matrices often contain inhibitors of PCR, which is a primary reason for sample processing; however, the purification process is highly inefficient, becoming unacceptable at lower signature concentrations. One potential solution is direct PCR assessment without sample processing. Here, we evaluated nine inhibitor-resistant PCR reagents for direct detection of Francisella tularensis in seven different clinical and environmental samples using an established real-time PCR assay to assess ability to overcome PCR inhibition. While several of these reagents were designed for standard PCR, the described inhibitor resistant properties (ex. Omni Klentaq can amplify target DNA samples of up to 20% whole blood or soil) led to our evaluation with real-time PCR. A preliminary limit of detection (LOD) was determined for each chemistry in whole blood and buffer, and LODs (20 replicates) were determined for the top five chemistries in each matrix (buffer, whole blood, sputum, stool, swab, soil, and sand). Not surprisingly, no single chemistry performed the best across all of the different matrices evaluated. For instance, Phusion Blood Direct PCR Kit, Phire Hot Start DNA polymerase, and Phire Hot Start DNA polymerase with STR Boost performed best for direct detection in whole blood while Phire Hot Start DNA polymerase with STR Boost were the only reagents to yield an LOD in the femtogram range for soil. Although not the best performer across all matrices, KAPA Blood PCR kit produced the most consistent results among the various conditions assessed. Overall, while these inhibitor resistant reagents show promise for direct amplification of complex samples by real-time PCR, the amount of template required for detection would not be in a clinically relevant range for most matrices.


Scientific Reports | 2016

Circulating microRNA profiles of Ebola virus infection

Janice Duy; Jeffrey W. Koehler; Anna N. Honko; Randal J. Schoepp; Nadia Wauquier; Jean-Paul Gonzalez; M. Louise Pitt; Eric M. Mucker; Joshua C. Johnson; Aileen O’Hearn; James Bangura; Moinya Coomber; Timothy D. Minogue

Early detection of Ebola virus (EBOV) infection is essential to halting transmission and adjudicating appropriate treatment. However, current methods rely on viral identification, and this approach can misdiagnose presymptomatic and asymptomatic individuals. In contrast, disease-driven alterations in the host transcriptome can be exploited for pathogen-specific diagnostic biomarkers. Here, we present for the first time EBOV-induced changes in circulating miRNA populations of nonhuman primates (NHPs) and humans. We retrospectively profiled longitudinally-collected plasma samples from rhesus macaques challenged via intramuscular and aerosol routes and found 36 miRNAs differentially present in both groups. Comparison of miRNA abundances to viral loads uncovered 15 highly correlated miRNAs common to EBOV-infected NHPs and humans. As proof of principle, we developed an eight-miRNA classifier that correctly categorized infection status in 64/74 (86%) human and NHP samples. The classifier identified acute infections in 27/29 (93.1%) samples and in 6/12 (50%) presymptomatic NHPs. These findings showed applicability of NHP-derived miRNAs to a human cohort, and with additional research the resulting classifiers could impact the current capability to diagnose presymptomatic and asymptomatic EBOV infections.


Journal of Microbiological Methods | 2012

Comparison of nucleic acid extraction platforms for detection of select biothreat agents for use in clinical resource limited settings

Michelle A. Shipley; Jeffrey W. Koehler; David A. Kulesh; Timothy D. Minogue

High-quality nucleic acids are critical for optimal PCR-based diagnostics and pathogen detection. Rapid sample processing time is important for the earliest administration of therapeutic and containment measures, especially in the case of biothreat agents. In this context, we compared the Fujifilm QuickGene-Mini80 to Qiagens QIAamp Mini Purification kits for extraction of DNA and RNA for potential use in austere settings. Qiagen (QIAamp) column-based extraction is the currently recommended purification platform by United States Army Medical Research Institute for Infectious Diseases for both DNA and RNA extraction. However, this sample processing system requires dedicated laboratory equipment including a centrifuge. In this study, we investigated the QuickGene-Mini80, which does not require centrifugation, as a suitable platform for nucleic acid extraction for use in resource-limited locations. Quality of the sample extraction was evaluated using pathogen-specific, real-time PCR assays for nucleic acids extracted from viable and γ-irradiated Bacillus anthracis, Yersinia pestis, vaccinia virus, Venezuelan equine encephalitis virus, or B. anthracis spores in buffer or human whole blood. QuickGene-Mini80 and QIAamp performed similarly for DNA extraction regardless of organism viability. It was noteworthy that γ-irradiation did not have a significant impact on real-time PCR for organism detection. Comparison with QIAamp showed a less than adequate performance of the Fujifilm instrument for RNA extraction. However, QuickGene-Mini80 remains a viable alternative to QIAamp for DNA extraction for use in remote settings due to extraction quality, time efficiency, reduced instrument requirements, and ease of use.


Viruses | 2015

Evaluation of Signature Erosion in Ebola Virus Due to Genomic Drift and Its Impact on the Performance of Diagnostic Assays.

Shanmuga Sozhamannan; Mitchell Y. Holland; Adrienne T. Hall; Daniel A. Negrón; Mychal Ivancich; Jeffrey W. Koehler; Timothy D. Minogue; Catherine E. Campbell; Walter J. Berger; George W. Christopher; Bruce G. Goodwin; Michael A. Smith

Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes.


PLOS ONE | 2014

Development and Evaluation of a Panel of Filovirus Sequence Capture Probes for Pathogen Detection by Next-Generation Sequencing

Jeffrey W. Koehler; Adrienne T. Hall; P. Alexander Rolfe; Anna N. Honko; Gustavo Palacios; Joseph N. Fair; Jean-Jacques Muyembe; Prime Mulembekani; Randal J. Schoepp; Adeyemi Adesokan; Timothy D. Minogue

A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.


PLOS Neglected Tropical Diseases | 2013

A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

Jeffrey W. Koehler; Jeffrey M. Smith; Daniel R. Ripoll; Kristin Spik; Shannon L. Taylor; Catherine V. Badger; Rebecca J. Grant; Monica Ogg; Anders Wallqvist; Mary C. Guttieri; Robert F. Garry; Connie S. Schmaljohn

For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.


Scientific Reports | 2016

Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

Christopher P. Stefan; Jeffrey W. Koehler; Timothy D. Minogue

Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions.


PLOS Neglected Tropical Diseases | 2017

A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models

Aura R. Garrison; Charles Jason Shoemaker; Joseph W. Golden; Collin J. Fitzpatrick; John J. Suschak; Michelle J. Richards; Catherine V. Badger; Carolyn Six; Jacqueline D. Martin; Drew Hannaman; Marko Zivcec; Éric Bergeron; Jeffrey W. Koehler; Connie S. Schmaljohn

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.


Journal of Clinical Microbiology | 2017

Laboratory Diagnosis of Lassa Fever

Vanessa Raabe; Jeffrey W. Koehler

ABSTRACT Lassa virus remains an important cause of illness in West Africa and among the travelers returning from this region with an acute febrile illness. The symptoms of Lassa fever can be nonspecific and mimic those of other endemic infections, especially early in illness, making a clinical diagnosis difficult; therefore, laboratory testing is needed to confirm the diagnosis. An early identification of Lassa fever is crucial for maximizing the benefit of available antiviral therapy, as treatment efficacy rapidly decreases following the clinical onset of the disease. This minireview provides an overview of the currently available diagnostic tests for Lassa fever and their strengths and weaknesses.


Antiviral Research | 2011

Novel plant-derived recombinant human interferons with broad spectrum antiviral activity

Jeffrey W. Koehler; Lesley C. Dupuy; Aura R. Garrison; Brett Beitzel; Michelle J. Richards; Daniel R. Ripoll; Anders Wallqvist; Shia-Yen Teh; Andrew A. Vaewhongs; Fakhrieh S. Vojdani; Hal S. Padgett; Connie S. Schmaljohn

Type I interferons (IFNs) are potent mediators of the innate immune response to viral infection. IFNs released from infected cells bind to a receptor (IFNAR) on neighboring cells, triggering signaling cascades that limit further infection. Subtle variations in amino acids can alter IFNAR binding and signaling outcomes. We used a new gene crossbreeding method to generate hybrid, type I human IFNs with enhanced antiviral activity against four dissimilar, highly pathogenic viruses. Approximately 1400 novel IFN genes were expressed in plants, and the resultant IFN proteins were screened for antiviral activity. Comparing the gene sequences of a final set of 12 potent IFNs to those of parent genes revealed strong selection pressures at numerous amino acids. Using three-dimensional models based on a recently solved experimental structure of IFN bound to IFNAR, we show that many but not all of the amino acids that were highly selected for are predicted to improve receptor binding.

Collaboration


Dive into the Jeffrey W. Koehler's collaboration.

Top Co-Authors

Avatar

Adrienne T. Hall

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Minogue

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Anna N. Honko

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aura R. Garrison

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Connie S. Schmaljohn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Randal J. Schoepp

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Catherine V. Badger

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Stefan

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Korey L. Delp

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Michelle J. Richards

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge