Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey W. Kruk is active.

Publication


Featured researches published by Jeffrey W. Kruk.


The Astrophysical Journal | 2000

Overview of the Far Ultraviolet Spectroscopic Explorer Mission

H. W. Moos; Webster Cash; L. L. Cowie; Arthur F. Davidsen; Andrea K. Dupree; Paul D. Feldman; Scott D. Friedman; James C. Green; R. F. Green; C. Gry; J. B. Hutchings; Edward B. Jenkins; J. L. Linsky; Roger F. Malina; Andrew G. Michalitsianos; Blair D. Savage; J. M. Shull; O. H. W. Siegmund; Theodore P. Snow; George Sonneborn; A. Vidal-Madjar; Allan J. Willis; Bruce E. Woodgate; D. G. York; Thomas B. Ake; B-G Andersson; John Paul Andrews; Robert H. Barkhouser; Luciana Bianchi; William P. Blair

The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution. The instrument consists of four co-aligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al :LiF coatings for optimum reflectivity between approximately 1000 and 1187 Angstrom, and the other two channels use SiC coatings for optimized throughput between 905 and 1105 Angstrom. The gratings are holographically ruled to correct largely for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way and also sufficient to use as active galactic nuclei and QSOs for absorption-line studies of both Milky Way and extragalactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I, and the strong electronic transitions of H-2 and HD.


The Astrophysical Journal | 2000

On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer Satellite

David J. Sahnow; H. W. Moos; Thomas B. Ake; J. Andersen; B-G Andersson; M. Andre; D. Artis; A. F. Berman; William P. Blair; Kenneth R. Brownsberger; H. M. Calvani; Pierre Chayer; Steven J. Conard; Paul D. Feldman; Scott D. Friedman; A. W. Fullerton; G. A. Gaines; W. C. Gawne; James C. Green; M. A. Gummin; T. B. Jennings; J. B. Joyce; Mary Elizabeth Kaiser; Jeffrey W. Kruk; D. J. Lindler; Derck L. Massa; Edward M. Murphy; William R. Oegerle; Raymond G. Ohl; Bryce A. Roberts

The launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include the initial coalignment, focusing, and characterization of the four instrument channels and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of these data and prelaunch laboratory measurements.


The Astrophysical Journal | 2006

What Is the Total Deuterium Abundance in the Local Galactic Disk

Jeffrey L. Linsky; B. T. Draine; H. W. Moos; Edward B. Jenkins; Brian E. Wood; Cristina M. Oliveira; William P. Blair; Scott D. Friedman; C. Gry; David C. Knauth; Jeffrey W. Kruk; Sylvestre Lacour; Nicolas Lehner; Seth Redfield; J. Michael Shull; George Sonneborn; Gerard M. Williger

Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, together with spectra from the Copernicus and interstellar medium absorption profile spectrograph (IMAPS) instruments, reveal an unexplained, very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble. We argue that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime [log N(H ) = 19.2-20.7], and the low gas-phase D/H ratios observed at larger hydrogen column densities. We consider empirical tests of the deuterium depletion hypothesis: (1) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (2) correlation with the H2 rotational temperature. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the most representative value for the total (gas plus dust) D/H ratio within 1 kpc of the Sun is ≥23.1 ± 2.4(1 σ) parts per million (ppm). This ratio constrains Galactic chemical evolution models to have a very small deuterium astration factor, the ratio of primordial to total (D/H) ratio in the local region of the Galactic disk, which we estimate to be fd ≤ 1.19(1 σ) or ≤1.12 ± 0.14(1 σ) depending on the adopted light-element nuclear reaction rates.


Astrophysical Journal Supplement Series | 2002

Abundances of Deuterium, Nitrogen, and Oxygen in the Local Interstellar Medium: Overview of First Results from the FUSE Mission

H. W. Moos; K. R. Sembach; A. ‐Madjar; D. G. York; Scott D. Friedman; G. Hébrard; Jeffrey W. Kruk; Nicolas Lehner; Martin Lemoine; George Sonneborn; Brian E. Wood; Thomas B. Ake; M. Andre; William P. Blair; Pierre Chayer; C. Gry; Andrea K. Dupree; R. Ferlet; Paul D. Feldman; James C. Green; J. C. Howk; J. B. Hutchings; Edward B. Jenkins; Jeffrey L. Linsky; E. M. Murphy; William R. Oegerle; Cristina M. Oliveira; Katherine C. Roth; David J. Sahnow; Blair D. Savage

Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D i ,N i, and O i along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 to 179 pc. Five of the sight lines are within the Local Bubble, and two penetrate the surrounding H i wall. Reliable values of N(H i) were determined for five of the sight lines from Hubble Space Telescope (HST) data, International Ultraviolet Explorer (IUE) data, and published Extreme Ultraviolet Explorer (EUVE) measurements. The weighted mean of D i/H i for these five sight lines is ð1:52 � 0:08 Þ� 10 � 5 (1 � uncertainty in the mean). It is likely that the D i/H i ratio in the Local Bubble has a single value. The D i/O i ratio for the five sight lines within the Local Bubble is ð3:76 � 0:20 Þ� 10 � 2 .I t is likely that O i column densities can serve as a proxy for H i in the Local Bubble. The weighted mean for O i/H i for the seven FUSE sight lines is ð3:03 � 0:21 Þ� 10 � 4 , comparable to the weighted mean ð3:43 � 0:15 Þ� 10 � 4 reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N i/H i for five sight lines is half that reported by Meyer and colleagues for seven sight lines with larger distances and higher column densities. This result combined with the variability of O i/N i (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O i ,N i cannot be used as a proxy for H i or as a metallicity indicator in the LISM. Subject headings: cosmology: observations — Galaxy: abundances — ISM: abundances — ISM: evolution — ultraviolet: ISM


The Astrophysical Journal | 2004

A Study of the Reionization History of Intergalactic Helium with FUSE and the Very Large Telescope

W. Zheng; Gerard A. Kriss; J.-M. Deharveng; William Van Dyke Dixon; Jeffrey W. Kruk; J. M. Shull; Mark L. Giroux; Donald C. Morton; Gerard M. Williger; Scott D. Friedman; H. W. Moos

We obtained high-resolution Far Ultraviolet Spectroscopic Explorer (FUSE; R ~ 20,000) and Very Large Telescope (VLT; R ~ 45,000) spectra of the quasar HE 2347-4342 in order to study the properties of the intergalactic medium between redshifts z = 2.0 and 2.9. The high-quality optical spectrum allows us to identify approximately 850 H I absorption lines with column densities between N ~ 5 × 1011 and 1018 cm-2. The reprocessed FUSE spectrum extends the wavelength coverage of the He II absorption down to an observed wavelength of 920 A. Source flux is detected to rest-frame wavelengths as short as ~237 A. Approximately 1400 He II absorption lines are identified, including 917 He II Lyα systems and some of their He II Lyβ, Lyγ, and Lyδ counterparts. The ionization structure of He II is complex, with approximately 90 absorption lines that are not detected in the hydrogen spectrum. These features may represent the effect of soft ionizing sources. The ratio η = N(He )/N(H ) varies approximately from unity to more than a thousand, with a median value of 62 and a distribution consistent with the intrinsic spectral indexes of quasars. This provides evidence that the dominant ionizing field is from the accumulated quasar radiation, with contributions from other soft sources such as star-forming regions and obscured active galactic nuclei, which do not ionize helium. We find an evolution in η toward smaller values at lower redshift, with the gradual disappearance of soft components. At redshifts z > 2.7, the large but finite increase in the He II opacity, τ = 5 ± 1, suggests that we are viewing the end stages of a reionization process that began at an earlier epoch. Fits of the absorption profiles of unblended lines indicate comparable velocities between hydrogen and He+ ions. For line widths b = ξbH, we find ξ = 0.95 ± 0.12, indicating a velocity field in the intergalactic medium dominated by turbulence. At hydrogen column densities N < 3 × 1012 cm-2, the number of forest lines shows a significant deficit relative to a power law and becomes negligible below N = 1011 cm-2.


Astrophysical Journal Supplement Series | 2003

The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in and near the Galaxy

B. P. Wakker; Blair D. Savage; Kenneth R. Sembach; Philipp Richter; Marilyn R. Meade; Edward B. Jenkins; J. M. Shull; Thomas B. Ake; William P. Blair; William Van Dyke Dixon; Scott D. Friedman; James C. Green; Richard F. Green; Jeffrey W. Kruk; H. W. Moos; E. M. Murphy; William R. Oegerle; David J. Sahnow; George Sonneborn; Erik Wilkinson; D. G. York

We present Far Ultraviolet Spectroscopic Explorer (FUSE) observations of the O VI λλ1031.926, 1037.617 absorption lines associated with gas in and near the Milky Way, as detected in the spectra of a sample of 100 extragalactic targets and two distant halo stars. We combine data from several FUSE Science Team programs with guest observer data that were public before 2002 May 1. The sight lines cover most of the sky above Galactic latitude |b| > 25°—at lower latitude the ultraviolet extinction is usually too large for extragalactic observations. We describe the details of the calibration, alignment in velocity, continuum fitting, and manner in which several contaminants were removed—Galactic H2, absorption intrinsic to the background target and intergalactic Lyβ lines. This decontamination was done very carefully, and in several sight lines very subtle problems were found. We searched for O VI absorption in the velocity range -1200 to 1200 km s-1. With a few exceptions, we only find O VI in the velocity range -400 to 400 km s-1; the exceptions may be intergalactic O VI. In this paper we analyze the O VI associated with the Milky Way (and possibly with the Local Group). We discuss the separation of the observed O VI absorption into components associated with the Milky Way halo and components at high velocity, which are probably located in the neighborhood of the Milky Way. We describe the measurements of equivalent width and column density, and we analyze the different contributions to the errors. We conclude that low-velocity Galactic O VI absorption occurs along all sight lines—the few nondetections only occur in noisy spectra. We further show that high-velocity O VI is very common, having equivalent width >65 mA in 50% of the sight lines and equivalent width >30 mA in 70% of the high-quality sight lines. The central velocities of high-velocity O VI components range from |vLSR| = 100 to 330 km s-1; there is no correlation between velocity and absorption strength. We discuss the possibilities for studying O VI absorption associated with Local Group galaxies and conclude that O VI is probably detected in M31 and M33. We limit the extent of an O VI halo around M33 to be 200 km s-1 occurs along all sight lines in the region l = 180°-300°, b > 20°.


Science | 2001

Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer

Gerard A. Kriss; J. M. Shull; William R. Oegerle; W. Zheng; Arthur F. Davidsen; Antoinette Songaila; Jason Tumlinson; Lennox L. Cowie; J.-M. Deharveng; Scott D. Friedman; M. L. Giroux; Richard F. Green; J. B. Hutchings; Edward B. Jenkins; Jeffrey W. Kruk; H. W. Moos; Donald C. Morton; K. R. Sembach; Todd M. Tripp

The neutral hydrogen (H i) and ionized helium (Heii) absorption in the spectra of quasars are unique probes of structure in the early universe. We present Far-Ultraviolet Spectroscopic Explorer observations of the line of sight to the quasar HE2347-4342 in the 1000 to 1187 angstrom band at a resolving power of 15,000. We resolve the He ii Lyman α (Lyα) absorption as a discrete forest of absorption lines in the redshift range 2.3 to 2.7. About 50 percent of these features have H icounterparts with column densities N Hi > 1012.3 per square centimeter that account for most of the observed opacity in He iiLyα. The He ii to H i column density ratio ranges from 1 to >1000, with an average of ∼80. Ratios of <100 are consistent with photoionization of the absorbing gas by a hard ionizing spectrum resulting from the integrated light of quasars, but ratios of >100 in many locations indicate additional contributions from starburst galaxies or heavily filtered quasar radiation. The presence of He ii Lyα absorbers with no H icounterparts indicates that structure is present even in low-density regions, consistent with theoretical predictions of structure formation through gravitational instability.


Journal of Geophysical Research | 2001

High-resolution FUV spectroscopy of the terrestrial day airglow with the Far Ultraviolet Spectroscopic Explorer

Paul D. Feldman; David J. Sahnow; Jeffrey W. Kruk; Edward M. Murphy; H. Warren Moos

During orbital verification the Far Ultraviolet Spectroscopic Explorer obtained spectra of the terrestrial day airglow between 905 and 1184 A from an altitude of 766 km. The spectrographs have three apertures that can simultaneously record the atmospheric emissions with limiting instrumental spectral resolutions of approximately 0.4, 0.05, and 0.03 A. Seven orbits were obtained of observations of the sunlit Earth and disclose a wealth of emissions resulting from the electron impact excitation of N2 in addition to emissions of O I, N I, and N II produced by both photoelectron impact and by photodestructive excitation and ionization of thermospheric O and N2 by extreme ultraviolet solar radiation. The argon resonance transitions are unambiguously identified as are previously unreported transitions between highly excited energy levels of O+. These spectra have the highest spectral resolution and sensitivity in this spectral range to date and will provide valuable input to the interpretation of lower resolution spectra from current and future Earth remote sensing missions.


Publications of the Astronomical Society of the Pacific | 2007

CallFUSE Version 3: A Data Reduction Pipeline for the Far Ultraviolet Spectroscopic Explorer

William Van Dyke Dixon; David J. Sahnow; P. E. Barrett; T. Civeit; Jean Dupuis; A. W. Fullerton; B. Godard; J. C. Hsu; Mary Elizabeth Kaiser; Jeffrey W. Kruk; S. Lacour; Don J. Lindler; Derck L. Massa; Richard D. Robinson; M. L. Romelfanger; Paule Sonnentrucker

Since its launch in 1999, the Far Ultraviolet Spectroscopic Explorer (FUSE) has made over 4900 observations of some 2500 individual targets. The data are reduced by the principal investigator team at the Johns Hopkins University and archived at the Multimission Archive at STScI (MAST). The data reduction software package, called CalFUSE, has evolved considerably over the lifetime of the mission. The entire FUSE data set has recently been reprocessed with CalFUSE version 3.2, the latest version of this software. This paper describes CalFUSE version 3.2, the instrument calibrations on which it is based, and the format of the resulting calibrated data files.


Astrophysical Journal Supplement Series | 2002

Deuterium Abundance toward WD 2211–495: Results from the FUSE Mission*

G. Hébrard; Martin Lemoine; A. Vidal-Madjar; J.-M. Désert; A. Lecavelier des Etangs; R. Ferlet; Brian E. Wood; J. L. Linsky; Jeffrey W. Kruk; Pierre Chayer; S. Lacour; William P. Blair; Scott D. Friedman; H. W. Moos; K. R. Sembach; George Sonneborn; William R. Oegerle; Edward B. Jenkins

We present a deuterium abundance analysis of the line of sight toward the white dwarf WD 2211-495 observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). Numerous interstellar lines are detected on the continuum of the stellar spectrum. A thorough analysis was performed through the simultaneous fit of interstellar absorption lines detected in the four FUSE channels of multiple observations with different slits. We excluded all saturated lines in order to reduce possible systematic errors on the column density measurements. We report the determination of the average interstellar D/O and D/N ratios along this line of sight at the 95% confidence level: D/O = (4.0 ? 1.2) ? 10-2 and D/N = (4.4 ? 1.3) ? 10-1. In conjunction with FUSE observations of other nearby sight lines, the results of this study will allow a deeper understanding of the present-day abundance of deuterium in the local interstellar medium and its evolution with time.

Collaboration


Dive into the Jeffrey W. Kruk's collaboration.

Top Co-Authors

Avatar

K. Werner

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Thomas Rauch

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Pierre Chayer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

H. Warren Moos

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard A. Kriss

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. W. Moos

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

William R. Oegerle

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge