Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey W. Mercante is active.

Publication


Featured researches published by Jeffrey W. Mercante.


The EMBO Journal | 2013

Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

Rheinallt Jones; Liping Luo; Courtney S. Ardita; Arena N Richardson; Young Man Kwon; Jeffrey W. Mercante; Ashfaqul Alam; Cymone L Gates; Huixia Wu; Phillip A. Swanson; J. David Lambeth; Patricia W. Denning; Andrew S. Neish

The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic–eukaryotic cross‐talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)‐dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox‐mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential.


Molecular Microbiology | 2011

Circuitry linking the Csr and stringent response global regulatory systems.

Adrianne N. Edwards; Laura M. Patterson-Fortin; Christopher A. Vakulskas; Jeffrey W. Mercante; Katarzyna Potrykus; Daniel Vinella; Martha I. Camacho; Joshua A. Fields; Stuart A. Thompson; Michael Cashel; Paul Babitzke; Tony Romeo

CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10‐fold), while they modestly activated csrA expression. We propose that CsrA‐mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT‐PCR and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine‐tunes the stringent response and discuss biological implications of the composite circuitry.


Current Medicinal Chemistry | 2012

Reactive Oxygen Production Induced by the Gut Microbiota: Pharmacotherapeutic Implications

Rheinallt Jones; Jeffrey W. Mercante; Andrew S. Neish

The resident prokaryotic microbiota of the mammalian intestine influences diverse homeostatic functions, including regulation of cellular growth, maintenance of barrier function, and modulation of immune responses. However, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. Recent data has demonstrated that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced generation of ROS via stimulation of formyl peptide receptors is a cardinal feature of the cellular response of phagocytes to pathogenic or commensal bacteria, evidence is accumulating that ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals. Additionally, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways stimulated by proinflammatory cytokines and growth factors. This physiologically-generated ROS is known to participate in cellular signaling via the rapid and transient oxidative inactivation of a defined class of sensor proteins bearing oxidant-sensitive thiol groups. These proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, cytoskeletal dynamics, as well as components involved in control of ubiquitination-mediated NF-κB activation. Consistently, microbial-elicited ROS has been shown to mediate increased cellular proliferation and motility and to modulate innate immune signaling. These results demonstrate how enteric microbiota influence regulatory networks of the mammalian intestinal epithelia. We hypothesize that many of the known effects of the normal microbiota on intestinal physiology, and potential beneficial effects of candidate probiotic bacteria, may be at least partially mediated by this ROS-dependent mechanism.


Applied and Environmental Microbiology | 2014

Epithelial Adhesion Mediated by Pilin SpaC Is Required for Lactobacillus rhamnosus GG-Induced Cellular Responses

Courtney S. Ardita; Jeffrey W. Mercante; Young Man Kwon; Liping Luo; Madelyn E. Crawford; Domonica N. Powell; Rheinallt Jones; Andrew S. Neish

ABSTRACT Lactobacillus rhamnosus GG is a widely used probiotic, and the strains salutary effects on the intestine have been extensively documented. We previously reported that strain GG can modulate inflammatory signaling, as well as epithelial migration and proliferation, by activating NADPH oxidase 1-catalyzed generation of reactive oxygen species (ROS). However, how strain GG induces these responses is unknown. Here, we report that strain GGs probiotic benefits are dependent on the bacterial-epithelial interaction mediated by the SpaC pilin subunit. By comparing strain GG to an isogenic mutant that lacks SpaC (strain GGΩspaC), we establish that SpaC is necessary for strain GG to adhere to gut mucosa, that SpaC contributes to strain GG-induced epithelial generation of ROS, and that SpaC plays a role in strain GGs capacity to stimulate extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in enterocytes. In addition, we show that SpaC is required for strain GG-mediated stimulation of cell proliferation and protection against radiologically inflicted intestinal injury. The identification of a critical surface protein required for strain GG to mediate its probiotic influence advances our understanding of the molecular basis for the symbiotic relationship between some commensal bacteria of the gut lumen and enterocytes. Further insights into this relationship are critical for the development of novel approaches to treat intestinal diseases.


Applied and Environmental Microbiology | 2016

Genomic Resolution of Outbreak-Associated Legionella pneumophila Serogroup 1 Isolates from New York State

Brian H. Raphael; Deborah Baker; Elizabeth J. Nazarian; Pascal Lapierre; Dianna J. Bopp; Natalia A. Kozak-Muiznieks; Shatavia S. Morrison; Claressa E. Lucas; Jeffrey W. Mercante; Kimberlee A. Musser; Jonas M. Winchell

ABSTRACT A total of 30 Legionella pneumophila serogroup 1 isolates representing 10 separate legionellosis laboratory investigations (“outbreaks”) that occurred in New York State between 2004 and 2012 were selected for evaluation of whole-genome sequencing (WGS) approaches for molecular subtyping of this organism. Clinical and environmental isolates were available for each outbreak and were initially examined by pulsed-field gel electrophoresis (PFGE). Sequence-based typing alleles were extracted from WGS data yielding complete sequence types (ST) for isolates representing 8 out of the 10 outbreaks evaluated in this study. Isolates from separate outbreaks sharing the same ST also contained the fewest differences in core genome single nucleotide polymorphisms (SNPs) and the greatest proportion of identical allele sequences in a whole-genome multilocus sequence typing (wgMLST) scheme. Both core SNP and wgMLST analyses distinguished isolates from separate outbreaks, including those from two outbreaks sharing indistinguishable PFGE profiles. Isolates from a hospital-associated outbreak spanning multiple years shared indistinguishable PFGE profiles but displayed differences in their genome sequences, suggesting the presence of multiple environmental sources. Finally, the rtx gene demonstrated differences in the repeat region sequence among ST1 isolates from different outbreaks, suggesting that variation in this gene may be useful for targeted molecular subtyping approaches for L. pneumophila. This study demonstrates the utility of various genome sequence analysis approaches for L. pneumophila for environmental source attribution studies while furthering the understanding of Legionella ecology. IMPORTANCE We demonstrate that whole-genome sequencing helps to improve resolution of Legionella pneumophila isolated during laboratory investigations of legionellosis compared to traditional subtyping methods. These data can be important in confirming the environmental sources of legionellosis outbreaks. Moreover, we evaluated various methods to analyze genome sequence data to help resolve outbreak-related isolates.


PLOS ONE | 2016

Genomic Analysis Reveals Novel Diversity among the 1976 Philadelphia Legionnaires' Disease Outbreak Isolates and Additional ST36 Strains.

Jeffrey W. Mercante; Shatavia S. Morrison; Heta P. Desai; Brian H. Raphael; Jonas M. Winchell

Legionella pneumophila was first recognized as a cause of severe and potentially fatal pneumonia during a large-scale outbreak of Legionnaires’ disease (LD) at a Pennsylvania veterans’ convention in Philadelphia, 1976. The ensuing investigation and recovery of four clinical isolates launched the fields of Legionella epidemiology and scientific research. Only one of the original isolates, “Philadelphia-1”, has been widely distributed or extensively studied. Here we describe the whole-genome sequencing (WGS), complete assembly, and comparative analysis of all Philadelphia LD strains recovered from that investigation, along with L. pneumophila isolates sharing the Philadelphia sequence type (ST36). Analyses revealed that the 1976 outbreak was due to multiple serogroup 1 strains within the same genetic lineage, differentiated by an actively mobilized, self-replicating episome that is shared with L. pneumophila str. Paris, and two large, horizontally-transferred genomic loci, among other polymorphisms. We also found a completely unassociated ST36 strain that displayed remarkable genetic similarity to the historical Philadelphia isolates. This similar strain implies the presence of a potential clonal population, and suggests important implications may exist for considering epidemiological context when interpreting phylogenetic relationships among outbreak-associated isolates. Additional extensive archival research identified the Philadelphia isolate associated with a non-Legionnaire case of “Broad Street pneumonia”, and provided new historical and genetic insights into the 1976 epidemic. This retrospective analysis has underscored the utility of fully-assembled WGS data for Legionella outbreak investigations, highlighting the increased resolution that comes from long-read sequencing and a sequence type-matched genomic data set.


Emerging Infectious Diseases | 2017

Legionnaires’ Disease Outbreak Caused by Endemic Strain of Legionella pneumophila, New York, New York, USA, 2015

Pascal Lapierre; Elizabeth J. Nazarian; Yan Zhu; Danielle Wroblewski; Amy Saylors; Teresa Passaretti; Scott Hughes; Anthony Tran; Ying Lin; John Kornblum; Shatavia S. Morrison; Jeffrey W. Mercante; Robert Fitzhenry; Don Weiss; Brian H. Raphael; Jay K. Varma; Howard A. Zucker; Jennifer L. Rakeman; Kimberlee A. Musser

During the summer of 2015, New York, New York, USA, had one of the largest and deadliest outbreaks of Legionnaires’ disease in the history of the United States. A total of 138 cases and 16 deaths were linked to a single cooling tower in the South Bronx. Analysis of environmental samples and clinical isolates showed that sporadic cases of legionellosis before, during, and after the outbreak could be traced to a slowly evolving, single-ancestor strain. Detection of an ostensibly virulent Legionella strain endemic to the Bronx community suggests potential risk for future cases of legionellosis in the area. The genetic homogeneity of the Legionella population in this area might complicate investigations and interpretations of future outbreaks of Legionnaires’ disease.


mSphere | 2017

Characterization of Legionella Species from Watersheds in British Columbia, Canada

Michael A. Peabody; Jason A. Caravas; Shatavia S. Morrison; Jeffrey W. Mercante; Natalie Prystajecky; Brian H. Raphael; Fiona S. L. Brinkman

Many species of Legionella can cause Legionnaires’ disease, a significant cause of bacterial pneumonia. Legionella in human-made water systems such as cooling towers and building plumbing systems are the primary sources of Legionnaires’ disease outbreaks. In this temporal study of natural aquatic environments, Legionella relative abundance was shown to vary in watersheds associated with different land uses. Analysis of the Legionella sequences detected at these sites revealed highly diverse populations that included potentially novel Legionella species. These findings have important implications for understanding the ecology of Legionella and control measures for this pathogen that are aimed at reducing human disease. ABSTRACT Legionella spp. present in some human-made water systems can cause Legionnaires’ disease in susceptible individuals. Although legionellae have been isolated from the natural environment, variations in the organism’s abundance over time and its relationship to aquatic microbiota are poorly understood. Here, we investigated the presence and diversity of legionellae through 16S rRNA gene amplicon and metagenomic sequencing of DNA from isolates collected from seven sites in three watersheds with varied land uses over a period of 1 year. Legionella spp. were found in all watersheds and sampling sites, comprising up to 2.1% of the bacterial community composition. The relative abundance of Legionella tended to be higher in pristine sites than in sites affected by agricultural activity. The relative abundance levels of Amoebozoa, some of which are natural hosts of legionellae, were similarly higher in pristine sites. Compared to other bacterial genera detected, Legionella had both the highest richness and highest alpha diversity. Our findings indicate that a highly diverse population of legionellae may be found in a variety of natural aquatic sources. Further characterization of these diverse natural populations of Legionella will help inform prevention and control efforts aimed at reducing the risk of Legionella colonization of built environments, which could ultimately decrease the risk of human disease. IMPORTANCE Many species of Legionella can cause Legionnaires’ disease, a significant cause of bacterial pneumonia. Legionella in human-made water systems such as cooling towers and building plumbing systems are the primary sources of Legionnaires’ disease outbreaks. In this temporal study of natural aquatic environments, Legionella relative abundance was shown to vary in watersheds associated with different land uses. Analysis of the Legionella sequences detected at these sites revealed highly diverse populations that included potentially novel Legionella species. These findings have important implications for understanding the ecology of Legionella and control measures for this pathogen that are aimed at reducing human disease.


Diagnostic Microbiology and Infectious Disease | 2016

Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay

Kristen E. Cross; Jeffrey W. Mercante; Alvaro J. Benitez; Ellen Brown; Maureen H. Diaz; Jonas M. Winchell

Legionnaires’ disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80–90%), other species have also been reported to cause disease. However, little is known about Legionnaires’ disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5′-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50 fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease.


Genome Announcements | 2017

Complete Genome Sequences of Legionella pneumophila subsp. fraseri Strains Detroit-1 and Dallas 1E

Brian H. Raphael; Natalia A. Kozak-Muiznieks; Shatavia S. Morrison; Jeffrey W. Mercante; Jonas M. Winchell

ABSTRACT We report here the complete genome sequences of two of the earliest known strains of Legionella pneumophila subsp. fraseri. Detroit-1 is serogroup 1 and was isolated from a lung biopsy specimen in 1977. Dallas 1E is serogroup 5 and was isolated in 1978 from a cooling tower.

Collaboration


Dive into the Jeffrey W. Mercante's collaboration.

Top Co-Authors

Avatar

Brian H. Raphael

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jonas M. Winchell

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Shatavia S. Morrison

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia A. Kozak-Muiznieks

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Paul Babitzke

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Tony Romeo

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge