Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffry W. Stevenson is active.

Publication


Featured researches published by Jeffry W. Stevenson.


Journal of The Electrochemical Society | 1996

Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M = Sr, Ba, Ca)

Jeffry W. Stevenson; Timothy R. Armstrong; R.D. Carneim; Larry R. Pederson; William J. Weber

Perovskite compositions in the system La 1-x M x Co 1-y Fe y O 3-δ (M = Sr, Ba, Ca) exhibited high electronic and ionic conductivity. Substantial reversible weight loss was observed at elevated temperatures as the materials became increasingly oxygen deficient. This loss of lattice oxygen at high temperatures, which tended to increase with increasing acceptor content, resulted in a decrease in the electronic conductivity. In an oxygen partial pressure gradient, oxygen flux through dense sintered membranes of these materials was highly dependent on composition and increased with increasing temperature. The increase in oxygen flux with increasing temperature was attributed to increases in the mobility concentration of lattice oxygen vacancies. The calculated ionic conductivities of some compositions exceeded that of yttria-stabilized zirconia.Perovskite compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) exhibited high electronic and ionic conductivity. Substantial reversible weight loss was observed at elevated temperatures as the materials became increasingly oxygen deficient. This loss of lattice oxygen at high temperatures, which tended to increase with increasing acceptor content, resulted in a decrease in the electronic conductivity. In an oxygen partial pressure gradient, oxygen flux through dense sintered membranes of these materials was highly dependent on composition and increased with increasing temperature. The increase in oxygen flux with increasing temperature was attributed to increases in the mobility and concentration of lattice oxygen vacancies. The calculated ionic conductivities of some compositions exceeded that of yttria-stabilized zirconia. This material is an attractive candidate for several important applications, including solid oxide fuel cell cathodes.


Journal of The Electrochemical Society | 1996

Dimensional Instability of Doped Lanthanum Chromite

Timothy R. Armstrong; Jeffry W. Stevenson; Larry R. Pederson; Paige E. Raney

Lattice expansion phase stability, and dimensional stability of doped lanthanum chromites have been examined over a wide range of temperatures and oxygen partial pressures. Reduction of doped lanthanum chromite resulted in a linear expansion of the sample that was dependent on the acceptor (Sr, Ca) concentration, temperature, oxygen partial pressure, and oxygen content within the sample. Additional doping with aliovalent B-site additives significantly reduced lattice expansion in reducing environments. The lattice expansion in reducing environments was directly related to the loss of lattice oxygen and the simultaneous reduction of Cr{sup 4+} to Cr{sup 3+} to maintain electroneutrality.


Archive | 2008

Investigation of AISI 441 Ferritic Stainless Steel and Development of Spinel Coatings for SOFC Interconnect Applications

Zhenguo Yang; Guanguang Xia; Chong M. Wang; Zimin Nie; Joshua D. Templeton; Prabhakar Singh; Jeffry W. Stevenson

As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare and spinel coated AISI 441 were studied in terms of metallurgical characteristics, oxidation behavior, and electrical performance. The conventional melt metallurgy used for the bulk alloy fabrication leads to significant processing cost reduction and the alloy chemistry with the presence of minor alloying additions of Nb and Ti facilitate the strengthening by precipitation and formation of Laves phase both inside grains and along grain boundaries during exposure in the intermediate SOFC operating temperature range. The Laves phase formed along the grain boundaries also ties up Si and prevents the formation of an insulating silica layer at the scale/metal interface during prolonged exposure. The substantial increase in ASR during long term oxidation due to oxide scale growth suggested the need for a conductive protection layer, which could also minimize Cr evaporation. In particular, Mn1.5Co1.5O4 based surface coatings on planar coupons drastically improved the electrical performance of the 441, yielding stable ASR values at 800oC for over 5,000 hours. Ce-modified spinel coatings retained the advantages of the unmodified spinel coatings, and also appeared to alter the scale growth behavior beneath the coating, leading to a more adherent scale. The spinel protection layers appeared also to improve the surface stability of 441 against the anomalous oxidation that has been observed for ferritic stainless steels exposed to dual atmosphere conditions similar to SOFC interconnect environments. Hence, it is anticipated that, compared to unmodified spinel coatings, the Ce-modified coatings may lead to superior structural stability and electrical performance.


Archive | 2011

Reactive Air Aluminization

Jung-Pyung Choi; Yeong-Shyung Chou; Jeffry W. Stevenson

Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.


Archive | 2005

Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

Z. Gary Yang; Gordon Xia; Jeffry W. Stevenson; Prabhakar Singh

The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface. The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.


Archive | 2005

Development of (Mn,Co)3O4 Protection Layers for Ferritic Stainless Steel Interconnects

Zhenguo Yang; Steven P. Simner; Prabhakar Singh; Guanguang Xia; Jeffry W. Stevenson

A spinel-based surface protection layer has been developed for alloy SOFC current collectors and bi-polar gas separators. The (Mn,Co)3O4 spinel with a nominal composition of Mn1.5Co1.5O4 demonstrates an excellent electrical conductivity and thermal expansion match to ferritic stainless steel interconnects. A slurry-coating technique provides a viable approach for fabricating protective layers of the spinel onto the steel interconnects. Thermally grown protection layers of Mn1.5Co1.5O4 have been found not only to significantly decrease the contact resistance between a LSF cathode and stainless steel interconnect, but also inhibits the sub-scale growth on the stainless steel. The combination of the inhibited sub-scale growth, good thermal expansion matching between the spinel and the stainless steel, and the closed-pore structure contribute to the excellent structural and thermomechanical stability of these spinel protection layers, which was verified by a long-term thermal-cycling test. The spinel protection layers can also act effectively to prevent outward diffusion of chromium from the interconnect alloy, preventing subsequent chromium migration into the cathode and contact materials. PNNL is currently engaged in studies intended to optimize the composition, microstructure, and fabrication procedure for the spinel protection layers.


Archive | 2014

FY13 Annual Progress Report for SECA Core Technology Program

Jeffry W. Stevenson; Brian J. Koeppel

This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation. Primary areas of emphasis for the materials development work were metallic interconnects and coatings, cathode and anode stability/degradation, glass seals, and advanced testing under realistic stack conditions: Metallic interconnects and coatings • Effects of surface modifications to AISI 441 (prior to application of protective spinel coatings) on oxide scale growth and adhesion were evaluated as a function of temperature and time. Cathode stability/degradation • Effects of cathode air humidity on performance and stability of SOFC cathodes were investigated by testing anode-supported cells as a function of time and temperature. • In-situ high temperature XRD measurements were used to correlate changes in cathode lattice structure and composition with performance of anode-supported button cells. Anode stability/degradation • Effects of high fuel steam content on Ni/YSZ anodes were investigated over a range of time and temperature. • Vapor infiltration and particulate additions were evaluated as a potential means of improving tolerance of Ni/YSZ anodes to sulfur-bearing fuel species. Glass seals • A candidate compliant glass-based seal materials were evaluated in terms of microstructural evolution and seal performance as a function of time and temperature. Stack fixture testing • The SECA CTP stack test fixture was used for intermediate and long-term evaluation of candidate materials and processes. Primary areas of emphasis for the computational modeling work were coarse methodology, degradation of stack components, and electrochemical modeling: Coarse methodology • Improvements were made to both the SOFC-MP and SOFC ROM simulation tools. Degradation of stack components • Thermo-mechanical modeling and validation experiments were performed to understand/mitigate degradation of interconnects and seals during long-term stack operation. Electrochemical modeling 4 • Modeling tools were developed to improve understanding of electrochemical performance degradation of SOFCs related to changes in electrode microstructure and chemical interactions with contaminants. During FY13, PNNL continued to work with NETL to increase the extent of interaction between the SECA Core Technology Program and the SECA Industry Teams. In addition to using established mechanisms of communication, such as the annual SECA Workshop, representatives from PNNL and NETL participated in telecons and/or face-to-face meetings with all three industry teams during FY13. During these meetings, PNNL’s Core Technology Program work was presented in detail, after which feedback was solicited regarding current and future research topics. Results of PNNL’s SECA CTP work were also distributed via topical reports for the industry teams, DOE reports, technical society presentations, and papers in peer-reviewed technical journals. 5


Archive | 2013

Surface Treatments for Improved Performance of Spinel-coated AISI 441 Ferritic Stainless Steel

Jeffry W. Stevenson; Eric M. Riel; Elizabeth V. Stephens; Mohammad A. Khaleel

Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, steel candidates face several challenges; including long term oxidation under interconnect exposure conditions, which can lead to increased electrical resistance, surface instability, and poisoning of cathodes due to volatilization of Cr. To potentially extend interconnect lifetime and improve performance, a variety of surface treatments were performed on AISI 441 ferritic stainless steel coupons prior to application of a protective spinel coating. The coated coupons were then subjected to oxidation testing at 800 and 850°C in air, and electrical testing at 800°C in air. While all of the surface-treatments resulted in improved surface stability (i.e., increased spallation resistance) compared to untreated AISI 441, the greatest degree of improvement (through 20,000 hours of testing at 800°C and 14,000 hours of testing at 850°C) was achieved by surface blasting.


Archive | 2011

Enhanced Densification of SDC Barrier Layers

John S. Hardy; Jared W. Templeton; Zigui Lu; Jeffry W. Stevenson

This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.


Archive | 2011

Effect of A-site Non-stoichiometry on LSCF Cathodes

Jared W. Templeton; Zigui Lu; Jeffry W. Stevenson; John S. Hardy

LSCF Cathodes were explored when effected with A-site non-stoichiometry. At 700-800 C, the operating temperatures of intermediate temperature (IT-) SOFCs have enabled the use of stainless steels in the SOFC framework and current collectors, allowing significant reductions in cost. However, the lower operating temperatures of IT-SOFCs also result in significant decreases in power densities of cells with LSM cathodes due to their high activation energies. LSCF is a mixed ionic electronic conducting perovskite that exhibits higher performance than LSM/YSZ composites and shows potential as a replacement cathode. This study investigates the effect of A-site stoichiometry on the performance of LSCF cathodes. Cell tests showed that A-site and Sr-deficient LSCF cathodes consistently outperformed stoichiometric LSCF cathodes, exhibiting up to 10% higher cell power densities. It was also observed that all stoichiometric, A-site, and Sr-deficient LSCF cathodes degraded over time at similar rates. Contributions of ohmic and electrode polarization losses to cell degradation rates were similar regardless of cathode composition.

Collaboration


Dive into the Jeffry W. Stevenson's collaboration.

Top Co-Authors

Avatar

Prabhakar Singh

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

John S. Hardy

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jared W. Templeton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yeong-Shyung Chou

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Guanguang Xia

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Olga A. Marina

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven P. Simner

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhenguo Yang

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zigui Lu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kerry D. Meinhardt

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge