Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelena Lazovic is active.

Publication


Featured researches published by Jelena Lazovic.


Journal of Cerebral Blood Flow and Metabolism | 2005

Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury

Anirban Basu; Jelena Lazovic; J. Kyle Krady; David T. Mauger; Raymond P. Rothstein; Michael B. Smith; Steven W. Levison

Excessive inflammation has been implicated in the progressive neurodegeneration that occurs in multiple neurological diseases, including cerebral ischemia, and elevated levels of the proinflammatory cytokine interleukin-1 (IL-1) have been shown to exacerbate brain damage, whereas diminishing IL-1 levels limits the extent of injury. However, to date there is no consensus regarding which receptor(s) mediates the detrimental effects of IL-1. Because we have previously demonstrated that signaling through the IL-1 type 1 receptor (IL-1R1) is necessary for microglial activation and because results from other studies have implicated microglia as effectors of neurodegeneration, we hypothesized that inactivating the IL-1R1 would decrease the extent of damage caused by a hypoxic-ischemic (H/I) insult. It is shown that a mild insult initiates progressive neurodegeneration that leads to cystic infarcts, which can be prevented by inactivating the IL-1R1. The IL-1R1 null mice also show preserved sensorimotor function at 1 months recovery. The mild insult induces multiple proinflammatory cytokines and activates microglia, and these responses are dramatically curtailed in mice lacking the IL-1R1. Importantly, the neuroinflammation precedes the progressive enlargement of the infarct, suggesting that the inflammation is causal rather than a consequence of the brain damage. These findings show that abrogating the inflammation consequent to a mild H/I insult will prevent brain damage and preserve neurological function. Additionally, these data incriminate the IL-1R1 as a master proinflammatory cytokine receptor.


Brain | 2008

Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease

William J. Zinnanti; Jelena Lazovic; Kathleen Griffin; Kristen J. Skvorak; Harbhajan S. Paul; Gregg E. Homanics; Maria C. Bewley; Keith C. Cheng; Kathryn F. LaNoue; John M. Flanagan

Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branched-chain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress.


Journal of Clinical Investigation | 2007

Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I

William J. Zinnanti; Jelena Lazovic; Cathy Housman; Kathryn F. LaNoue; James P. O'Callaghan; Ian A. Simpson; Michael Woontner; Stephen I. Goodman; James R. Connor; Russell E. Jacobs; Keith C. Cheng

Glutaric acidemia type I (GA-I) is an inherited disorder of lysine and tryptophan metabolism presenting with striatal lesions anatomically and symptomatically similar to Huntington disease. Affected children commonly suffer acute brain injury in the context of a catabolic state associated with nonspecific illness. The mechanisms underlying injury and age-dependent susceptibility have been unknown, and lack of a diagnostic marker heralding brain injury has impeded intervention efforts. Using a mouse model of GA-I, we show that pathologic events began in the neuronal compartment while enhanced lysine accumulation in the immature brain allowed increased glutaric acid production resulting in age-dependent injury. Glutamate and GABA depletion correlated with brain glutaric acid accumulation and could be monitored in vivo by proton nuclear magnetic resonance (1H NMR) spectroscopy as a diagnostic marker. Blocking brain lysine uptake reduced glutaric acid levels and brain injury. These findings provide what we believe are new monitoring and treatment strategies that may translate for use in human GA-I.


Stroke | 2005

Neuroinflammation and Both Cytotoxic and Vasogenic Edema Are Reduced in Interleukin-1 Type 1 Receptor-Deficient Mice Conferring Neuroprotection

Jelena Lazovic; Anirban Basu; Hsiao-Wen Lin; Raymond P. Rothstein; J. Kyle Krady; Michael B. Smith; Steven W. Levison

Background and Purpose— Interleukin-1 (IL-1) is a proinflammatory cytokine implicated in multiple neurodegenerative diseases, including stroke. However, to date, there is no consensus regarding which receptor(s) mediates the detrimental effects of IL-1. We hypothesized that abrogating IL-1 type 1 receptor (IL-1R1) signaling would reduce edema, chemokine expression, and leukocyte infiltration; lower levels of iNOS; and, consequently, decrease free radical damage after mild hypoxia/ischemia (H/I), thus preserving brain cells. Methods— IL-1R1 null mice and wild-type mice were subjected to a mild H/I insult. MRI was used to measure the area affected at 30 minutes and 48 hours after H/I. An RNAse protection assay was used to evaluate changes in chemokine mRNA expression. RT-PCR was used to assess inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase mRNA levels. Immunohistochemistry was used to assess leukocyte infiltration. Western blots were used to assess iNOS and glutamate aspartate transporter protein levels. Results— IL-1R1 null mice had reduced cytotoxic and vasogenic edema. The volume of hyperintense signal on T2-weighted images was reduced on average by 90% at 48 hours after H/I. The induction of multiple chemokine mRNAs was significantly reduced in IL-1R1 null mice compared with wild-type mice at 18 and 72 hours after H/I, which correlated with fewer infiltrating CD3+ leukocytes. Levels of iNOS protein and mRNA (but not glutamate aspartate transporter) were significantly reduced in the IL-1R1 mouse brain. Conclusions— These findings indicate that abrogating IL-1R1 signaling could protect brain cells subsequent to a mild stroke by reducing edema and immune cell recruitment, as well as by limiting iNOS-mediated free radical damage.


Clinical Cancer Research | 2008

Imaging Immune Response In vivo : Cytolytic Action of Genetically Altered T Cells Directed to Glioblastoma Multiforme

Jelena Lazovic; Michael C. Jensen; Evette Ferkassian; Brenda Aguilar; Andrew Raubitschek; Russell E. Jacobs

Purpose: Clinical trials have commenced to evaluate the feasibility of targeting malignant gliomas with genetically engineered CTLs delivered directly to the tumor bed in the central nervous system. The objective of this study is to determine a suite of magnetic resonance imaging (MRI) measurements using an orthotopic xenograft murine model that can noninvasively monitor immunologically mediated tumor regression and reactive changes in the surrounding brain parenchyma. Experimental Design: Our preclinical therapeutic platform is based on CTL genetic modification to express a membrane tethered interleukin-13 (IL-13) cytokine chimeric T-cell antigen receptor. This enables selective binding and signal transduction on encountering the glioma-restricted IL-13 α2 receptor (IL-13Rα2). We used MRI to visualize immune responses following adoptive transfer of IL-13Rα2-specific CD8+ CTL clones. Results: Based on MRI measurements, several phases following IL-13Rα2-specific T-cell adoptive transfer could be distinguished, all of which correlated well with glioblastoma regression confirmed on histology. The first detectable changes, 24 hours post-treatment, were significantly increased T2 relaxation times and strongly enhanced signal on T1-weighted postcontrast images. In the next phase, the apparent diffusion coefficient was significantly increased at 2 and 3 days post-treatment. In the last phase, at day 3 after IL-13Rα2-specific T-cell injection, the volume of hyperintense signal on T1-weighted postcontrast image was significantly decreased, whereas apparent diffusion coefficient remained elevated. Conclusions: The present study indicates the feasibility of MRI to visualize different phases of immune response when IL-13Rα2-specific CTLs are administered directly to the glioma tumor bed. This will further the aim of better predicting clinical outcome following immunotherapy.


PLOS ONE | 2010

Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone: an FMRI study.

Anthony C. Johnson; Brent Myers; Jelena Lazovic; Rheal A. Towner; Beverley Greenwood-Van Meerveld

Background Although visceral pain of gastrointestinal (GI) origin is the major complaint in patients with irritable bowel syndrome (IBS) it remains poorly understood. Brain imaging studies suggest a defect in brain-gut communication in IBS with a greater activation of central arousal circuits including the amygdala. Previously, we found that stereotaxic implantation of corticosterone (CORT) onto the amygdala in rats induced anxiety and colonic hypersensitivity. In the present study we used functional magnetic resonance imaging (fMRI) to identify specific brain sites activated in a rat model characterized by anxiety and colonic hypersensitivity. Methodology/Principal Findings Anesthetized male rats received micropellets (30 µg each) of either CORT or cholesterol (CHOL), to serve as a control, implanted stereotaxically on the dorsal margin of each amygdala. Seven days later, rats were anesthetized and placed in the fMRI magnet (7T). A series of isobaric colorectal balloon distensions (CRD - 90s ‘off’, 30s ‘on’, 8 replicates) at two pressures (40 and 60 mmHg) were performed in a standard block-design. Cross correlation statistical analysis was used to determine significant differences between distended and non-distended states in CORT and CHOL-treated animals. Analysis of the imaging data demonstrated greater overall brain activation in response to CRD in rats with CORT implants compared to CHOL controls. Additionally, CORT implants produced significant positive bilateral increases in MRI signal in response to CRD in specific nuclei known as integration sites important in anxiety and pain perception. Conclusions and Significance These data indicate that chronic exposure of the amygdala to elevated levels of CORT enhances overall brain activation in response to CRD, and identified other specific brain regions activated in response to mechanical distension of the colon. These results demonstrate the feasibility of performing fMRI imaging in a rodent model that supports clinical observations in IBS patients with enhanced amygdala activation and symptomatology of abdominal pain and anxiety.


Neuro-oncology | 2012

Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation

Jelena Lazovic; Horacio Soto; David Piccioni; Jerry R. Lou; Sichen Li; Leili Mirsadraei; William H. Yong; Robert M. Prins; Linda M. Liau; Benjamin M. Ellingson; Timothy F. Cloughesy; Albert Lai; Whitney B. Pope

The arginine 132 (R132) mutation of isocitrate dehydrogenase -1 (IDH1(R132)) results in production of 2-hydroxyglutarate (2-HG) and is associated with a better prognosis compared with wild-type (WT) in glioma patients. The majority of lower-grade gliomas express IDH1(R132), whereas this mutation is rare in grade IV gliomas. The aim of this study was to noninvasively investigate metabolic and physiologic changes associated with the IDH1 mutation in a mouse glioma model. Using a 7T magnet, we compared MRI and proton magnetic resonance spectroscopy (MRS) in U87 glioma cells overexpressing either the mutated IDH1(R132) or IDH1 wild-type (IDH1(WT)) gene in a mouse flank xenograft model. Flank tumors overexpressing IDH1(R132) showed a resonance at 2.25 ppm corresponding to the 2-HG peak described for human IDH1(R132) gliomas. WT tumors lacked this peak in all cases. IDH1 mutant tumors demonstrated significantly reduced glutamate by in vivo MRS. There were no significant differences in T(2), apparent diffusion coefficient (ADC), or perfusion values between the mutant and IDH1(WT) tumors. The IDH1(R132) mutation results in 2-HG resonance at 2.25 ppm and a reduction of glutamate levels as determined by MRS. Our results establish a model system where 2-HG can be monitored noninvasively, which should be helpful in validating 2-HG levels as a prognostic and/or predictive biomarker in glioma.


Neurogastroenterology and Motility | 2005

Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI.

Jelena Lazovic; H. F. Wrzos; Qing X. Yang; Christopher M. Collins; Michael B. Smith; Ralph Norgren; K. Matyas; Ann Ouyang

Abstract  Aim:  The aim of the study was to determine and compare the areas of brain activated in response to colorectal distention (CRD) using functional magnetic resonance imaging (fMRI) and c‐fos protein expression.


Journal of Inherited Metabolic Disease | 2012

Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy

William J. Zinnanti; Jelena Lazovic

Maple syrup urine disease (MSUD) was first recognized as an inherited lethal encephalopathy beginning in the first week of life and associated with an unusual odor in the urine of affected children. It was later confirmed as a deficiency of branched-chain keto acid dehydrogenase (BCKDH), which is the second step in branched-chain amino acid (BCAA) breakdown. MSUD is characterized by BCAA and branched-chain keto acid (BCKA) accumulation. BCAAs are essential amino acids and powerful metabolic signals with severe consequences of both deprivation and accumulation. Treatment requires life-long dietary restriction and monitoring of BCAAs. However, despite excellent compliance, children commonly suffer metabolic decompensation during intercurrent illness resulting in life-threatening cerebral edema and dysmyelination. The mechanisms underlying brain injury have been poorly understood. Recent studies using newly developed mouse models of both classic and intermediate MSUD have yielded insight into the consequences of rapid BCAA accumulation. Additionally, these models have been used to test preliminary treatments aimed at competing with blood-brain barrier transport of BCAA using norleucine. Assessment of biochemical changes with and without treatment suggests different roles for BCAA and BCKA in the mechanism of brain injury.


Molecular Genetics and Metabolism | 2010

Mouse model of encephalopathy and novel treatment strategies with substrate competition in glutaric aciduria type I

William J. Zinnanti; Jelena Lazovic

Glutaric aciduria type I (GA-1) results from an inherited defect in a common step of lysine, hydroxylysine and tryptophan metabolism. This defect is associated with an age-dependent susceptibility to encephalopathy commonly preceded by non-specific childhood illnesses or fasting. The brain injury that develops with encephalopathic crisis in GA-1 is anatomically and symptomatically similar to Huntingtons disease, affecting the striatum. The mechanism of injury remains poorly understood. Recently, an animal model of GA-1 encephalopathy was developed by providing GA-1 mice with added dietary lysine. This model shows age-dependent susceptibility similar to the human disease. Enhanced lysine accumulation and utilization in the immature brain correlates with increased glutaric acid levels and age-dependent susceptibility. Neurotransmitter and Krebs cycle intermediate depletion in this model represent novel findings toward uncovering the mechanism of neuronal injury. Additionally this mouse model is responsive to glucose analogous to human GA-1 and provides insight toward the mechanism of this effect. Together these findings led to a new treatment strategy of competing with brain lysine uptake that shows promising results. This research serves as a model for understanding blood brain barrier amino acid transport at critical stages of development and may help advance understanding of brain injury and development of treatments in other IEMs including urea cycle disorders.

Collaboration


Dive into the Jelena Lazovic's collaboration.

Top Co-Authors

Avatar

William J. Zinnanti

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Michael B. Smith

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

James R. Connor

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith C. Cheng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Woontner

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen I. Goodman

University of Colorado Hospital

View shared research outputs
Top Co-Authors

Avatar

Ellen B. Wolpert

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Housman

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge