Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelena Mrdalj is active.

Publication


Featured researches published by Jelena Mrdalj.


PLOS ONE | 2013

Early and Later Life Stress Alter Brain Activity and Sleep in Rats

Jelena Mrdalj; Ståle Pallesen; Anne Marita Milde; Finn Konow Jellestad; Robert Murison; Reidun Ursin; Janne Grønli

Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way.


Chronobiology International | 2014

Hypothermia after chronic mild stress exposure in rats with a history of postnatal maternal separations

Jelena Mrdalj; Åse Lundegaard Mattson; Robert Murison; Finn Konow Jellestad; Anne Marita Milde; Ståle Pallesen; Reidun Ursin; Janne Grønli

The circadian system develops and changes in a gradual and programmed process over the lifespan. Early in life, maternal care represents an important zeitgeber and thus contributes to the development of circadian rhythmicity. Exposure to early life stress may affect circadian processes and induce a latent circadian disturbance evident after exposure to later life stress. Disturbance of the normal regulation of circadian rhythmicity is surmised to be an etiological factor in depression. We used postnatal maternal separation in rats to investigate how the early life environment might modify the circadian response to later life unpredictable and chronic stress. During postnatal days 2–14, male Wistar rats (n = 8 per group) were daily separated from their mothers for a period of either 180 min (long maternal separation; LMS) or 10 min (brief maternal separation; BMS). In adulthood, rats were exposed to chronic mild stress (CMS) for 4 weeks. Body temperature, locomotor activity and heart rate were measured and compared before and after CMS exposure. LMS offspring showed a delayed body temperature acrophase compared to BMS offspring. Otherwise, adult LMS and BMS offspring demonstrated similar diurnal rhythms of body temperature, locomotor activity and heart rate. Exposure to CMS provoked a stronger and longer lasting hypothermia in LMS rats than in BMS rats. The thermoregulatory response appears to be moderated by maternal care following reunion, an observation made in the LMS group only. The results show that early life stress (LMS) in an early developmental stage induced a thermoregulatory disturbance evident upon exposure to unpredictable adult life stressors.


Physiology & Behavior | 2014

Effects of social defeat on sleep and behaviour: Importance of the confrontational behaviour

Anne Marie Kinn Rød; Robert Murison; Jelena Mrdalj; Anne Marita Milde; Finn Konow Jellestad; Leif Arvid Øvernes; Janne Grønli

We studied the short- and long-term effects of a double social defeat (SD) on sleep parameters, EEG power, behaviour in the open field emergence test, corticosterone responsiveness, and acoustic startle responses. Pre-stress levels of corticosterone were assessed before all rats were surgically implanted with telemetric transmitters for sleep recording, and allowed 3weeks of recovery. Rats in the SD group (n=10) were exposed to 1hour SD on two consecutive days, while control rats (n=10) were left undisturbed. Telemetric sleep recordings were performed before SD (day -1), day 1 post SD, and once weekly for 3weeks thereafter. The open field emergence test was performed on day 9 and weekly for 2weeks thereafter. Blood samples for measures of corticosterone responsiveness were drawn after the last emergence test (day 23). Acoustic startle responses were tested on day 24 post SD. Overall, SD rats as a group were not affected by the social conflict. Effects of SD seemed, however, to vary according to the behaviours that the intruder displayed during the social confrontation with the resident. Compared to those SD rats showing quick submission (SDS, n=5), SD rats fighting the resident during one or both SD confrontations before defeat (SDF, n=5) showed more fragmented slow wave sleep, both in SWS1 and SWS2. They also showed longer latency to leave the start box and spent less time in the open field arena compared to SDS rats. In the startle test, SDF rats failed to show response decrement at the lowest sound level. Our results indicate that how animals behave during a social confrontation is more important than exposure to the SD procedure itself, and that rapid submission during a social confrontation might be more adaptive than fighting back.


Nutrients | 2016

Shift in food intake and changes in metabolic regulation and gene expression during simulated night-shift work : A rat model

Andrea Rørvik Marti; Peter Meerlo; Janne Grønli; Sjoerd Johan van Hasselt; Jelena Mrdalj; Ståle Pallesen; Torhild Thue Pedersen; Tone Elise Gjøtterud Henriksen; Silje Skrede

Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.


Journal of Biological Rhythms | 2017

A rodent model of night-shift work induces short-term and enduring sleep and electroencephalographic disturbances

Janne Grønli; Peter Meerlo; Torhild Thue Pedersen; Ståle Pallesen; Silje Skrede; Andrea Rørvik Marti; Jonathan P. Wisor; Robert Murison; Tone Eg Henriksen; Michael J. Rempe; Jelena Mrdalj

Millions of people worldwide are working at times that overlap with the normal time for sleep. Sleep problems related to the work schedule may mediate the well-established relationship between shift work and increased risk for disease, occupational errors and accidents. Yet, our understanding of causality and the underlying mechanisms that explain this relationship is limited. We aimed to assess the consequences of night-shift work for sleep and to examine whether night-shift work-induced sleep disturbances may yield electrophysiological markers of impaired maintenance of the waking brain state. An experimental model developed in rats simulated a 4-day protocol of night-work in humans. Two groups of rats underwent 8-h sessions of enforced ambulation, either at the circadian time when the animal was physiologically primed for wakefulness (active-workers, mimicking day-shift) or for sleep (rest-workers, mimicking night-shift). The 4-day rest-work schedule induced a pronounced redistribution of sleep to the endogenous active phase. Rest-work also led to higher electroencephalogram (EEG) slow-wave (1-4 Hz) energy in quiet wakefulness during work-sessions, suggesting a degraded waking state. After the daily work-sessions, being in their endogenous active phase, rest-workers slept less and had higher gamma (80-90 Hz) activity during wake than active-workers. Finally, rest-work induced an enduring shift in the main sleep period and attenuated the accumulation of slow-wave energy during NREM sleep. A comparison of recovery data from 12:12 LD and constant dark conditions suggests that reduced time in NREM sleep throughout the recorded 7-day recovery phase induced by rest-work may be modulated by circadian factors. Our data in rats show that enforced night-work-like activity during the normal resting phase has pronounced acute and persistent effects on sleep and waking behavior. The study also underscores the potential importance of animal models for future studies on the health consequences of night-shift work and the mechanisms underlying increased risk for diseases.


Physiology & Behavior | 2016

Mild daily stressors in adulthood may counteract behavioural effects after constant presence of mother during early life

Jelena Mrdalj; Robert Murison; Jonathan Soulé; Anne Marie Kinn Rød; Anne Marita Milde; Ståle Pallesen; Janne Grønli

This study investigated adult rat behaviour in three early life conditions, and how behaviour was affected after exposure to chronic mild stressors in later life. During postnatal days 2-14, male Wistar rats were exposed daily to either long or brief maternal separation, or were left undisturbed with their mothers (non-handled). As adults, non-handled and long maternally separated offspring demonstrated less object exploration than brief maternally separated offspring. Non-handled offspring also showed lower pre-pulse inhibition compared to both long and brief maternally separated offspring. Sucrose preference and open field behaviour as adults did not differ between the early life conditions. Exposure to four weeks of chronic mild stress in adulthood (mimicking daily hassles in humans) increased object exploration, increased pre-pulse inhibition and induced habituation of acoustic startle in non-handled offspring, similar to brief maternally separated offspring. Long maternally separated offspring exposed to chronic mild stress failed to show an increase in object exploration and enhanced pre-pulse inhibition, and did not show habituation of acoustic startle. In conclusion, different early life conditions have a different long-term impact on behaviour. Offspring from all three conditions differed from each other in terms of adult behaviour. Mild daily stressors in the adulthood counteracted the effects observed in the non-handled condition.


Frontiers in Neural Circuits | 2017

No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

Andrea Rørvik Marti; Sudarshan Patil; Jelena Mrdalj; Peter Meerlo; Silje Skrede; Ståle Pallesen; Torhild Thue Pedersen; Clive R. Bramham; Janne Grønli

Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m7GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.


Translational Psychiatry | 2016

Implication of NOTCH1 gene in susceptibility to anxiety and depression among sexual abuse victims

Iris M. Steine; Tetyana Zayats; Christine Stansberg; Ståle Pallesen; Jelena Mrdalj; Bjarte Håvik; Jonathan Soulé; Jan Haavik; Anne Marita Milde; Silje Skrede; Robert Murison; John H. Krystal; Janne Grønli

Sexual abuse contributes to the development of multiple forms of psychopathology, including anxiety and depression, but the extent to which genetics contributes to these disorders among sexual abuse victims remains unclear. In this translational study, we first examined gene expression in the brains of rodents exposed to different early-life conditions (long, brief or no maternal separation). Hypothesizing that genes revealing changes in expression may have relevance for psychiatric symptoms later in life, we examined possible association of those genes with symptoms of anxiety and depression in a human sample of sexual abuse victims. Changes in rodent brain gene expression were evaluated by means of correspondence and significance analyses of microarrays by comparing brains of rodents exposed to different early-life conditions. Tag single-nucleotide polymorphisms (SNPs) of resulting candidate genes were genotyped and tested for their association with symptoms of anxiety and depression (Hospital Anxiety and Depression Scale) in a sample of 361 sexual abuse victims, using multinomial logistic regression. False discovery rate was applied to account for multiple testing in the genetic association study, with q-value of 0.05 accepted as significant. We identified four genes showing differential expression among animals subjected to different early-life conditions as well as having potential relevance to neural development or disorders: Notch1, Gabrr1, Plk5 and Zfp644. In the human sample, significant associations were observed for two NOTCH1 tag SNPs: rs11145770 (OR=2.21, q=0.043) and rs3013302 (OR=2.15, q=0.043). Our overall findings provide preliminary evidence that NOTCH1 may be implicated in the susceptibility to anxiety and depression among sexual abuse victims. The study also underscores the potential importance of animal models for future studies on the health consequences of early-life stress and the mechanisms underlying increased risk for psychiatric disorders.


The Journal of Physiology | 2018

Can night shift workers benefit from light exposure

Janne Grønli; Jelena Mrdalj

Day-and-night cycles have evolved since life on Earth originated 3.8 billion years ago. Plants, humans and animals have an internal, biological clock that helps to anticipate and adapt to regular rhythm of the day. This article is protected by copyright. All rights reserved.


Neurobiology of Sleep and Circadian Rhythms | 2018

Mathematical Modeling of Sleep State Dynamics in a Rodent Model of Shift Work

Michael J. Rempe; Janne Grønli; Torhild Thue Pedersen; Jelena Mrdalj; Andrea Rørvik Marti; Peter Meerlo; Jonathan P. Wisor

Millions of people worldwide are required to work when their physiology is tuned for sleep. By forcing wakefulness out of the body’s normal schedule, shift workers face numerous adverse health consequences, including gastrointestinal problems, sleep problems, and higher rates of some diseases, including cancers. Recent studies have developed protocols to simulate shift work in rodents with the intention of assessing the effects of night-shift work on subsequent sleep (Grønli et al., 2017). These studies have already provided important contributions to the understanding of the metabolic consequences of shift work (Arble et al., 2015; Marti et al., 2016; Opperhuizen et al., 2015) and sleep-wake-specific impacts of night-shift work (Grønli et al., 2017). However, our understanding of the causal mechanisms underlying night-shift-related sleep disturbances is limited. In order to advance toward a mechanistic understanding of sleep disruption in shift work, we model these data with two different approaches. First we apply a simple homeostatic model to quantify differences in the rates at which sleep need, as measured by slow wave activity during slow wave sleep (SWS) rises and falls. Second, we develop a simple and novel mathematical model of rodent sleep and use it to investigate the timing of sleep in a simulated shift work protocol (Grønli et al., 2017). This mathematical framework includes the circadian and homeostatic processes of the two-process model, but additionally incorporates a stochastic process to model the polyphasic nature of rodent sleep. By changing only the time at which the rodents are forced to be awake, the model reproduces some key experimental results from the previous study, including correct proportions of time spent in each stage of sleep as a function of circadian time and the differences in total wake time and SWS bout durations in the rodents representing night-shift workers and those representing day-shift workers. Importantly, the model allows for deeper insight into circadian and homeostatic influences on sleep timing, as it demonstrates that the differences in SWS bout duration between rodents in the two shifts is largely a circadian effect. Our study shows the importance of mathematical modeling in uncovering mechanisms behind shift work sleep disturbances and it begins to lay a foundation for future mathematical modeling of sleep in rodents.

Collaboration


Dive into the Jelena Mrdalj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silje Skrede

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Meerlo

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge