Jelena Radulovic
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jelena Radulovic.
Nature Genetics | 2000
Toshimitsu Kishimoto; Jelena Radulovic; Marko Radulovic; Chijen R. Lin; Christina Schrick; Farideh Hooshmand; Ola Hermanson; Michael G. Rosenfeld; Joachim Spiess
Corticotropin-releasing hormone (Crh), a 41-residue polypeptide, activates two G-protein–coupled receptors, Crhr1 (refs 3–5) and Crhr2 (refs 6–9), causing (among other transductional events) phosphorylation of the transcription factor Creb (ref. 10). The physiologic role of these receptors is only partially understood. Here we report that male, but not female, Crhr2-deficient mice exhibit enhanced anxious behaviour in several tests of anxiety in contrast to mice lacking Crhr1 (refs 11,12). The enhanced anxiety of Crhr2-deficient mice is not due to changes in hypothalamic-pituitary-adrenal (HPA) axis activity, but rather reflects impaired responses in specific brain regions involved in emotional and autonomic function, as monitored by a reduction of Creb phosphorylation in male, but not female, Crhr2−/− mice. We propose that Crhr2 predominantly mediates a central anxiolytic response, opposing the general anxiogenic effect of Crh mediated by Crhr1. Neither male nor female Crhr2-deficient mice show alterations of baseline feeding behaviour. Both respond with increased edema formation in response to thermal exposure, however, indicating that in contrast to its central role in anxiety, the peripheral role of Crhr2 in vascular permeability is independent of gender.
The Journal of Neuroscience | 2004
Andre Fischer; Farahnaz Sananbenesi; Christina Schrick; Joachim Spiess; Jelena Radulovic
It is believed that de novo protein synthesis is fundamentally linked to synaptic changes in neuronal circuits involved in acquisition and extinction of conditioned responses. Recent studies show that neuronal plasticity may be also altered by cytoskeletal rearrangement independently of protein synthesis. We investigated the role of these processes in the hippocampus during acquisition and extinction of context-dependent conditioned fear in mice. Intrahippocampal injections of the protein synthesis inhibitors anisomycin and puromycin, or of the actin rearrangement inhibitors cytochalasin D and latrunculin A, prevented the acquisition of context-dependent fear. Unexpectedly, anisomycin and puromycin enhanced extinction without erasing the fear memory. In contrast, cytochalasin D and latrunculin A prevented extinction of context-dependent freezing. On the basis of these findings, it is suggested that certain hippocampal mechanisms mediating extinction of conditioned contextual fear are inhibited by protein synthesis and involve actin rearrangement. Such mechanisms might predominantly elicit modifications of hippocampal circuits that store the conditioning memory.
The Journal of Neuroscience | 2012
Amelia A. Mutso; Daniel Radzicki; Marwan N. Baliki; Lejian Huang; Ghazal Banisadr; Maria Virginia Centeno; Jelena Radulovic; Marco Martina; Richard J. Miller; A. Vania Apkarian
Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice compared with Sham animals exhibited hippocampal (1) reduced extracellular signal-regulated kinase expression and phosphorylation, (2) decreased neurogenesis, and (3) altered short-term synaptic plasticity. To relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared with controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity, and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients.
Molecular Brain Research | 2001
Madalina Stanciu; Jelena Radulovic; Joachim Spiess
Phosphorylation of the cAMP response element binding protein (pCREB) triggered by associative learning was monitored immunohistochemically in different areas of the mouse brain during a 6-h interval, starting immediately after training. One trial context-dependent fear conditioning was employed as a learning paradigm. Training consisted of contextual exposure followed by shock. Control groups consisted of naïve mice, mice exposed to the context alone and mice exposed to an immediate shock in the context. For all trained mice, the time course of CREB phosphorylation in hippocampus, parietal cortex and amygdaloid nuclei exhibited a biphasic pattern. The early phase was between 0 and 30 min, and the late phase was between 3 and 6 h after training. The animals exposed to context followed by an electric shock, as well as those exposed to an immediate electric shock, exhibited significantly higher pCREB levels than the mice subjected to context alone. During the late phase, the pCREB levels were highest in the mice exposed to the context followed by shock. It was observed that CREB phosphorylation and Fos production followed different regional and stimulus-dependent patterns. It is suggested that the early phase of pCREB increase may be related to stress-related behaviors, whereas the late phase may rather relate to memory consolidation.
Brain Research | 1998
Snezana Milanovic; Jelena Radulovic; Olgica Laban; Oliver Stiedl; Fritz A. Henn; Joachim Spiess
Male C57BL/6N mice were chosen to determine Fos production during acquisition of context-dependent fear and after re-exposure to the conditioning context. Fear-conditioning was induced by a single exposure of mice to a context followed by an electric shock. Control groups consisted of mice exposed to context only (Context group) or to an immediate electric shock. When contextual retention was measured 24 h after conditioning (retention test 1), significant contextual generalization was observed. However, when animals were exposed to a different context from days 2-5 after conditioning and then tested for retention on day 6 (retention test 2), generalization was markedly reduced. After the training, the fear-conditioned mice produced higher Fos levels than mice exposed to an immediate shock in the hippocampus, medial amygdaloid nucleus and parietal somatosensory cortex. Both shock groups produced significantly more Fos than the Context group in the central nucleus of the amygdala. After retention test 1, fear-conditioned mice generated more Fos in the hippocampus and central amygdaloid nucleus than the two control groups. However, all groups exhibited similarly low Fos production after retention test 2. The results demonstrated that simultaneous Fos production in the hippocampus, central and medial nuclei of amygdala and somatosensory parietal cortex closely paralleled the ability of mice to acquire conditioned fear. In contrast, Fos production after the retention tests did not correlate with the expression of conditioned fear.
Journal of Neuroscience Methods | 2002
Oliver Natt; Takashi Watanabe; Susann Boretius; Jelena Radulovic; Jens Frahm; Thomas Michaelis
This work demonstrates technical approaches to high-quality magnetic resonance imaging (MRI) of small structures of the mouse brain in vivo. It turns out that excellent soft-tissue contrast requires the reduction of partial volume effects by using 3D MRI at high (isotropic) resolution with linear voxel dimensions of about 100-150 microm. The long T(2)* relaxation times at relatively low magnetic fields (2.35 T) offer the benefit of a small receiver bandwidth (increased signal-to-noise) at a moderate echo time which together with the small voxel size avoids visual susceptibility artifacts. For measuring times of 1-1.5 h both T(1)-weighted (FLASH) and T(2)-weighted (Fast Spin-Echo) 3D MRI acquisitions exhibit detailed anatomical insights in accordance with histological sections from a mouse brain atlas. Preliminary applications address the identification of neuroanatomical variations in different mouse strains and the use of Mn(2+) as a T(1) contrast agent for neuroaxonal tracing of fiber tracts within the mouse visual pathway.
Behavioural Brain Research | 1999
Oliver Stiedl; Jelena Radulovic; Ragna Lohmann; Karin Birkenfeld; Markki Palve; Jens Kammermeier; Farahnaz Sananbenesi; Joachim Spiess
The performance of C57BL/6J (6J), C57BL/6N (6N), DBA/2J (2J) and DBA/2N (2N) mice in context- and tone-dependent fear conditioning was determined 24 h after fear conditioning to evaluate and compare different behavioral measures as indices of emotional learning. Freezing, the change in activity and the size of the explored area were evaluated as behavioral parameters indicating fear. Additionally, the heart rate (HR) increase elicited by tone presentation was evaluated as an autonomic indicator of fear. During the context-dependent memory test, freezing was high only in 6J and 6N mice, whereas a drop of activity and a reduced exploratory area was measured in all strains. During the tone-dependent memory test, high freezing, low activity, reduced exploratory area and a strong HR increase were demonstrated only in 6N and 6J mice, whereas behavioral and HR changes of 2J and 2N mice were always low. In extinction tests, context- and tone-dependent freezing of 6J mice decayed significantly faster than the freezing of 6N mice, whereas in both substrains the conditioned tachycardia to tone extinguished similarly in the home cage. The data demonstrate that monitoring of additional behavioral measures besides freezing and autonomic measures is necessary to interpret differences in associative learning performance of mouse strains that could be related to a differential expression of fear.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Michael E. Cahill; Zhong Xie; Michelle Day; Huzefa Photowala; Maria V. Barbolina; Courtney A. Miller; Craig Weiss; Jelena Radulovic; J. David Sweatt; John F. Disterhoft; D. James Surmeier; Peter Penzes
Dendritic spine morphogenesis contributes to brain function, cognition, and behavior, and is altered in psychiatric disorders. Kalirin is a brain-specific guanine-nucleotide exchange factor (GEF) for Rac-like GTPases and is a key regulator of spine morphogenesis. Here, we show that KALRN-knockout mice have specific reductions in cortical, but not hippocampal, Rac1 signaling and spine density, and exhibit reduced cortical glutamatergic transmission. These mice exhibit robust deficits in working memory, sociability, and prepulse inhibition, paralleled by locomotor hyperactivity reversible by clozapine in a kalirin-dependent manner. Several of these deficits are delayed and age-dependent. Our study thus links spine morphogenic signaling with age-dependent, delayed, disease-related phenotypes, including cognitive dysfunction.
Molecular Psychiatry | 2012
B M Andrus; Katherine D. Blizinsky; P Vedell; Kristen L. Dennis; Pradeep K. Shukla; Daniel J. Schaffer; Jelena Radulovic; Gary A. Churchill; Eva E. Redei
The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar–Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents.
Nature Neuroscience | 2013
Yomayra F. Guzmán; Natalie C. Tronson; Vladimir Jovasevic; Keisuke Sato; Anita L. Guedea; Hiroaki Mizukami; Katsuhiko Nishimori; Jelena Radulovic
The nonapeptide oxytocin is considered beneficial to mental health due to its anxiolytic, prosocial and antistress effects, but evidence for anxiogenic actions of oxytocin in humans has recently emerged. Using region-specific manipulations of the mouse oxytocin receptor (Oxtr) gene (Oxtr), we identified the lateral septum as the brain region mediating fear-enhancing effects of Oxtr. These effects emerge after social defeat and require Oxtr specifically coupled to the extracellular signal–regulated protein kinase pathway.