Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelle Hendrix is active.

Publication


Featured researches published by Jelle Hendrix.


Journal of Virology | 2006

Overexpression of the Lens Epithelium-Derived Growth Factor/p75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication

Jan De Rijck; Linos Vandekerckhove; Rik Gijsbers; Anneleen Hombrouck; Jelle Hendrix; Jo Vercammen; Yves Engelborghs; Frauke Christ; Zeger Debyser

ABSTRACT We initially identified lens epithelium-derived growth factor/p75 (LEDGF/p75) as a binding partner of human immunodeficiency virus type 1 (HIV-1) integrase. To investigate the role of LEDGF/p75 in HIV replication and its potential as a new antiviral target, we stably overexpressed two different fragments containing the integrase binding domain (IBD) of LEDGF/p75 fused to enhanced green fluorescent protein (eGFP). HIV-1 replication was severely inhibited by overexpression of the eGFP-IBD fusion proteins, while no inhibition was observed in cell lines overexpressing the interaction-deficient D366A mutant. Quantitative PCR pinpointed the block to the integration step, whereas nuclear import was not affected. Competition of the IBD fusion proteins with endogenous LEDGF/p75 for binding to integrase led to a potent defect in HIV-1 replication in both HeLaP4- and MT-4-derived cell lines. A previously described diketo acid-resistant HIV-1 strain remained fully susceptible to inhibition, suggesting that this strategy will also work in patients who harbor strains resistant to the current experimental integrase inhibitors. These data support LEDGF/p75 as an important cofactor for HIV replication and provide proof of concept for the LEDGF/p75-integrase interaction as a novel target for treating HIV-1 infection.


PLOS Pathogens | 2007

Virus Evolution Reveals an Exclusive Role for LEDGF/p75 in Chromosomal Tethering of HIV

Anneleen Hombrouck; Jan De Rijck; Jelle Hendrix; Linos Vandekerckhove; Arnout Voet; Marc De Maeyer; Myriam Witvrouw; Yves Engelborghs; Frauke Christ; Rik Gijsbers; Zeger Debyser

Retroviruses by definition insert their viral genome into the host cell chromosome. Although the key player of retroviral integration is viral integrase, a role for cellular cofactors has been proposed. Lentiviral integrases use the cellular protein LEDGF/p75 to tether the preintegration complex to the chromosome, although the existence of alternative host proteins substituting for the function of LEDGF/p75 in integration has been proposed. Truncation mutants of LEDGF/p75 lacking the chromosome attachment site strongly inhibit HIV replication by competition for the interaction with integrase. In an attempt to select HIV strains that can overcome the inhibition, we now have used T-cell lines that stably express a C-terminal fragment of LEDGF/p75. Despite resistance development, the affinity of integrase for LEDGF/p75 is reduced and replication kinetics in human primary T cells is impaired. Detection of the integrase mutations A128T and E170G at key positions in the LEDGF/p75–integrase interface provides in vivo evidence for previously reported crystallographic data. Moreover, the complementary inhibition by LEDGF/p75 knockdown and mutagenesis at the integrase–LEDGF/p75 interface points to the incapability of HIV to circumvent LEDGF/p75 function during proviral integration. Altogether, the data provide a striking example of the power of viral molecular evolution. The results underline the importance of the LEDGF/p75 HIV-1 interplay as target for innovative antiviral therapy. Moreover, the role of LEDGF/p75 in targeting integration will stimulate research on strategies to direct gene therapy vectors into safe landing sites.


Journal of Biological Chemistry | 2009

Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ

Koen Bartholomeeusen; Frauke Christ; Jelle Hendrix; Jean-Christophe Rain; Stéphane Emiliani; Richard Benarous; Zeger Debyser; Rik Gijsbers; Jan De Rijck

Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function.


Microbiology | 2010

Candida albicans biofilm formation in a new in vivo rat model.

Markéta Řičicová; Soňa Kucharíková; Hélène Tournu; Jelle Hendrix; Helena Bujdáková; Johan Van Eldere; Katrien Lagrou; Patrick Van Dijck

Device-associated microbial growth, including Candida biofilms, represents more than half of all human microbial infections and, despite a relatively small risk of implant-associated diseases, this type of infection usually leads to high morbidity, increased health-care costs and prolonged antimicrobial therapy. Animal models are needed to elucidate the complex host-pathogen interactions that occur during the development of attached and structured biofilm populations. We describe here a new in vivo model to study Candida biofilm, based on the avascular implantation of small catheters in rats. Polyurethane biomaterials challenged with Candida cells were placed underneath the skin of immunosuppressed animals following only minor surgery. The model allowed the study of up to ten biofilms at once, and the recovery of mature biofilms from 2 days after implantation. The adhering inoculum was adjusted to the standard threshold of positive diagnosis of fungal infection in materials recovered from patients. Wild-type biofilms were mainly formed of hyphal cells, and they were unevenly distributed across the catheter length as observed in infected materials in clinical cases. The hyphal multilayered structure of the biofilms of wild-type strains was observed by confocal microscopy and compared to the monolayer of yeast or hyphal cells of two well-known biofilm-deficient strains, efg1Delta/efg1 Delta cph1Delta/cph1Delta and bcr1Delta /bcr1Delta, respectively. The subcutaneous Candida biofilm model relies on the use of implanted catheters with accessible, fast and minor surgery to the animals. This model can be used to characterize the ability of antimicrobial agents to eliminate biofilms, and to evaluate the prophylactic effect of antifungal drugs and biomaterial coatings.


Retrovirology | 2013

LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions

Belete Ayele Desimmie; Rik Schrijvers; Jonas Demeulemeester; Doortje Borrenberghs; Caroline Weydert; Wannes Thys; Sofie Vets; Barbara Van Remoortel; Johan Hofkens; Jan De Rijck; Jelle Hendrix; Norbert Bannert; Rik Gijsbers; Frauke Christ; Zeger Debyser

BackgroundLEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN.ResultsHere we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late effect of LEDGINs and demonstrate that HIV virions produced in their presence display a severe replication defect. Both the late effect and the previously described, early effect on integration contribute to LEDGIN antiviral activity as shown by time-of-addition, qPCR and infectivity assays. The late effect phenotype requires binding of LEDGINs to integrase without influencing proteolytic cleavage or production of viral particles. LEDGINs augment IN multimerization during virion assembly or in the released viral particles and severely hamper the infectivity of progeny virions. About 70% of the particles produced in LEDGIN-treated cells do not form a core or display aberrant empty cores with a mislocalized electron-dense ribonucleoprotein. The LEDGIN-treated virus displays defective reverse transcription and nuclear import steps in the target cells. The LEDGIN effect is possibly exerted at the level of the Pol precursor polyprotein.ConclusionOur results suggest that LEDGINs modulate IN multimerization in progeny virions and impair the formation of regular cores during the maturation step, resulting in a decreased infectivity of the viral particles in the target cells. LEDGINs thus profile as unique antivirals with combined early (integration) and late (IN assembly) effects on the HIV replication cycle.


Biophysical Journal | 2010

Early Aggregation Steps in α-Synuclein as Measured by FCS and FRET: Evidence for a Contagious Conformational Change

Sangeeta Nath; Jessika Meuvis; Jelle Hendrix; Shaun A. Carl; Yves Engelborghs

The kinetics of aggregation of alpha-synuclein are usually studied by turbidity or Thio-T fluorescence. Here we follow the disappearance of monomers and the formation of early oligomers using fluorescence correlation spectroscopy. Alexa488-labeled A140C-synuclein was used as a fluorescent probe in trace amounts in the presence of excess unlabeled alpha-synuclein. Repeated short measurements produce a distribution of diffusion coefficients. Initially, a sharp peak is obtained corresponding to monomers, followed by a distinct transient population and the gradual formation of broader-sized distributions of higher oligomers. The kinetics of aggregation can be followed by the decreasing number of fast-diffusing species. Both the disappearance of fast-diffusing species and the appearance of turbidity can be fitted to the Finke-Watzky equation, but the apparent rate constants obtained are different. This reflects the fact that the disappearance of fast species occurs largely during the lag phase of turbidity development, due to the limited sensitivity of turbidity to the early aggregation process. The nucleation of the early oligomers is concentration-dependent and accompanied by a conformational change that precedes beta-structure formation, and can be visualized using fluorescence resonance energy transfer between the donor-labeled N-terminus and the acceptor-labeled cysteine in the mutant A140C.


Nucleic Acids Research | 2011

The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering

Jelle Hendrix; Rik Gijsbers; Jan De Rijck; Arnout Voet; Jun-ichi Hotta; Melissa McNeely; Johan Hofkens; Zeger Debyser; Yves Engelborghs

Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting.


Biochemical and Biophysical Research Communications | 2009

The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

Yves Briers; Mathias Schmelcher; Martin J. Loessner; Jelle Hendrix; Yves Engelborghs; Guido Volckaert; Rob Lavigne

The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD(KZ)), originating from Pseudomonas aeruginosa bacteriophage varphiKZ, has been examined using a fusion protein of PBD(KZ) and green fluorescent protein (PBD(KZ)-GFP). A fluorescence recovery after photobleaching analysis of bound PBD(KZ)-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10(7)M(-1) for the PBD(KZ)-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD(KZ)-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.


Molecular Therapy | 2012

Phage Display-directed Discovery of LEDGF/p75 Binding Cyclic Peptide Inhibitors of HIV Replication

Belete Ayele Desimmie; Michael Humbert; Eveline Lescrinier; Jelle Hendrix; Sofie Vets; Rik Gijsbers; Ruth M. Ruprecht; Ursula Dietrich; Zeger Debyser; Frauke Christ

The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction. The CPs inhibit HIV replication in different cell lines without overt toxicity. In accord with the role of LEDGF/p75 in HIV integration and its inhibition by LEDGINs, CP64, and CP65 block HIV replication primarily by inhibiting the integration step. The CPs retained activity against HIV strains resistant to raltegravir or LEDGINs. Saturation transfer difference (STD) NMR showed residues in CP64 that strongly interact with LEDGF/p75 but not with HIV IN. Mutational analysis identified tryptophan as an important residue responsible for the activity of the peptides. Serial passaging of virus in the presence of CPs did not yield resistant strains. Our work provides proof-of-concept for direct targeting of LEDGF/p75 as novel therapeutic strategy and the CPs thereby serve as scaffold for future development of new HIV therapeutics.


Journal of Cell Biology | 2015

Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers

Jelle Hendrix; Viola Baumgärtel; Waldemar Schrimpf; Sergey Ivanchenko; Michelle A. Digman; Enrico Gratton; Hans-Georg Kräusslich; Barbara Müller; Don C. Lamb

Analysis of the cytosolic HIV-1 Gag fraction in live cells via advanced fluctuation imaging methods reveals potential nucleation steps before membrane-assisted Gag assembly.

Collaboration


Dive into the Jelle Hendrix's collaboration.

Top Co-Authors

Avatar

Zeger Debyser

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yves Engelborghs

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jan De Rijck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Johan Hofkens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rik Gijsbers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Doortje Borrenberghs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Frauke Christ

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Frauke Christ

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Anneleen Hombrouck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wannes Thys

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge