Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelle Slager is active.

Publication


Featured researches published by Jelle Slager.


Cell | 2014

Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin

Jelle Slager; Morten Kjos; Laetitia Attaiech; Jan-Willem Veening

Streptococcus pneumoniae (pneumococcus) kills nearly 1 million children annually, and the emergence of antibiotic-resistant strains poses a serious threat to human health. Because pneumococci can take up DNA from their environment by a process called competence, genes associated with antibiotic resistance can rapidly spread. Remarkably, competence is activated in response to several antibiotics. Here, we demonstrate that antibiotics targeting DNA replication cause an increase in the copy number of genes proximal to the origin of replication (oriC). As the genes required for competence initiation are located near oriC, competence is thereby activated. Transcriptome analyses show that antibiotics targeting DNA replication also upregulate origin-proximal gene expression in other bacteria. This mechanism is a direct, intrinsic consequence of replication fork stalling. Our data suggest that evolution has conserved the oriC-proximal location of important genes in bacteria to allow for a robust response to replication stress without the need for complex gene-regulatory pathways. PAPERCLIP:


Molecular Systems Biology | 2017

High‐throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae

Xue Liu; Clement Gallay; Morten Kjos; Arnau Domenech; Jelle Slager; Sebastiaan P. van Kessel; Kèvin Knoops; Robin A. Sorg; Jing-Ren Zhang; Jan-Willem Veening

Genome‐wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae. However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn‐seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high‐content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi‐based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp‐proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP‐dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.


Genome Biology | 2016

Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection

Rieza Aprianto; Jelle Slager; Siger Holsappel; Jan-Willem Veening

BackgroundStreptococcus pneumoniae, the pneumococcus, is the main etiological agent of pneumonia. Pneumococcal infection is initiated by bacterial adherence to lung epithelial cells. The exact transcriptional changes occurring in both host and microbe during infection are unknown. Here, we developed a time-resolved infection model of human lung alveolar epithelial cells by S. pneumoniae and assess the resulting transcriptome changes in both organisms simultaneously by using dual RNA-seq.ResultsFunctional analysis of the time-resolved dual RNA-seq data identifies several features of pneumococcal infection. For instance, we show that the glutathione-dependent reactive oxygen detoxification pathway in epithelial cells is activated by reactive oxygen species produced by S. pneumoniae. Addition of the antioxidant resveratrol during infection abates this response. At the same time, pneumococci activate the competence regulon during co-incubation with lung epithelial cells. By comparing transcriptional changes between wild-type encapsulated and mutant unencapsulated pneumococci, we demonstrate that adherent pneumococci, but not free-floating bacteria, repress innate immune responses in epithelial cells including expression of the chemokine IL-8 and the production of antimicrobial peptides. We also show that pneumococci activate several sugar transporters in response to adherence to epithelial cells and demonstrate that this activation depends on host-derived mucins.ConclusionsWe provide a dual-transcriptomics overview of early pneumococcal infection in a time-resolved manner, providing new insights into host-microbe interactions. To allow easy access to the data by the community, a web-based platform was developed (http://dualrnaseq.molgenrug.nl). Further database exploration may expand our understanding of epithelial–pneumococcal interaction, leading to novel antimicrobial strategies.


PLOS Pathogens | 2016

Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System

Morten Kjos; Eric L. Miller; Jelle Slager; Frank B. Lake; Oliver Gericke; Ian S. Roberts; Daniel E. Rozen; Jan-Willem Veening

Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have unpredictable consequences on pneumococcal colonization dynamics by activating genes that mediate intra-specific interference competition.


Trends in Microbiology | 2016

Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location.

Jelle Slager; Jan-Willem Veening

Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combination of environmental parameters and the chromosomal location of a gene determine how many copies of its DNA are present at a given time during the cell cycle. Here, we review bacterial processes that rely, completely or partially, on the chromosomal location of involved genes and their fluctuating copy numbers. Special attention will be given to the several different ways in which these copy-number fluctuations can be used for bacterial cell fate determination or coordination of interdependent processes in a bacterial cell.


Nucleic Acids Research | 2018

Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39

Jelle Slager; Rieza Aprianto; Jan-Willem Veening

Abstract A precise understanding of the genomic organization into transcriptional units and their regulation is essential for our comprehension of opportunistic human pathogens and how they cause disease. Using single-molecule real-time (PacBio) sequencing we unambiguously determined the genome sequence of Streptococcus pneumoniae strain D39 and revealed several inversions previously undetected by short-read sequencing. Significantly, a chromosomal inversion results in antigenic variation of PhtD, an important surface-exposed virulence factor. We generated a new genome annotation using automated tools, followed by manual curation, reflecting the current knowledge in the field. By combining sequence-driven terminator prediction, deep paired-end transcriptome sequencing and enrichment of primary transcripts by Cappable-Seq, we mapped 1015 transcriptional start sites and 748 termination sites. We show that the pneumococcal transcriptional landscape is complex and includes many secondary, antisense and internal promoters. Using this new genomic map, we identified several new small RNAs (sRNAs), RNA switches (including sixteen previously misidentified as sRNAs), and antisense RNAs. In total, we annotated 89 new protein-encoding genes, 34 sRNAs and 165 pseudogenes, bringing the S. pneumoniae D39 repertoire to 2146 genetic elements. We report operon structures and observed that 9% of operons are leaderless. The genome data are accessible in an online resource called PneumoBrowse (https://veeninglab.com/pneumobrowse) providing one of the most complete inventories of a bacterial genome to date. PneumoBrowse will accelerate pneumococcal research and the development of new prevention and treatment strategies.


bioRxiv | 2018

Antibiotic-induced cell chaining triggers pneumococcal competence by reshaping quorum sensing to autocrine-like signaling

Arnau Domenech; Jelle Slager; Jan-Willem Veening

Streptococcus pneumoniae can acquire antibiotic resistance by activation of competence and subsequent DNA uptake. Several antibiotics induce competence by disrupting protein-quality control or perturbing DNA replication. Here, we demonstrate that aztreonam (AZT) and clavulanic acid (CLA) also promote competence. We show that both compounds induce cell chain formation by targeting the D,D-carboxypeptidase PBP3. In support of the hypothesis that chain formation promotes competence, we demonstrate that an autolysin mutant (lytB) is hypercompetent. As competence is initiated by the binding of a small extracellular peptide (CSP) to a membrane-anchored receptor (ComD), we wondered if chain formation alters CSP diffusion and thereby sensing by ComD. Indeed, the presence of AZT or CLA affects competence synchronization by switching CSP-based quorum sensing to autocrine-like signaling, as CSP is retained to chained cells and no longer shared in a common pool. Together, these insights demonstrate the versatility of quorum sensing in integrating different stresses and highlight that certain antibiotics should be prescribed with care not to drive the spread of antibiotic resistance.


bioRxiv | 2018

RocS drives chromosome segregation and nucleoid occlusion in Streptococcus pneumoniae

Chryslène Mercy; Jean-Pierre Lavergne; Jelle Slager; Adrien Ducret; Pierre Simon Garcia; Marie-Françoise Noirot-Gros; Nelly Dubarry; Julien Nourikyan; Jan-Willem Veening; Christophe Grangeasse

Segregation of replicated chromosomes in bacteria is poorly understood outside some prominent model strains and even less is known about how it is coordinated with other cellular processes. Here we report that RocS is crucial for chromosome segregation in the opportunistic human pathogen Streptococcus pneumoniae. RocS is membrane-bound and interacts both with DNA and the chromosome partitioning protein ParB to properly segregate the origin of replication region to new daughter cells. In addition, we show that RocS interacts with the tyrosine-autokinase CpsD required for polysaccharide capsule biogenesis, which is crucial for S. pneumoniae’s ability to prevent host immune detection. Altering the RocS-CpsD interaction drastically hinders chromosome partitioning and cell division. Altogether, this work reveals that RocS is the cornerstone of an atypical nucleoid occlusion system ensuring proper cell division in coordination with the biogenesis of a protective capsular layer.


Nucleic Acids Research | 2018

High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions.

Rieza Aprianto; Jelle Slager; Siger Holsappel; Jan-Willem Veening

Abstract Streptococcus pneumoniae is an opportunistic human pathogen that typically colonizes the nasopharyngeal passage and causes lethal disease in other host niches, such as the lung or the meninges. The expression and regulation of pneumococcal genes at different life-cycle stages, such as commensal or pathogenic, are not entirely understood. To chart the transcriptional responses of S. pneumoniae, we used RNA-seq to quantify the relative abundance of the transcriptome under 22 different infection-relevant conditions. The data demonstrated a high level of dynamic expression and, strikingly, all annotated pneumococcal genomic features were expressed in at least one of the studied conditions. By computing the correlation values of every pair of genes across all studied conditions, we created a co-expression matrix that provides valuable information on both operon structure and regulatory processes. The co-expression data are highly consistent with well-characterized operons and regulons, such as the PyrR, ComE and ComX regulons, and have allowed us to identify a new member of the competence regulon. Lastly, we created an interactive data center named PneumoExpress (https://veeninglab.com/pneumoexpress) that enables users to access the expression data as well as the co-expression matrix in an intuitive and efficient manner, providing a valuable resource to the pneumococcal research community.


bioRxiv | 2016

High-throughput CRISPRi phenotyping in Streptococcus pneumoniae identifies new essential genes involved in cell wall synthesis and competence development

Xue Liu; Clement Gallay; Morten Kjos; Arnau Domenech; Jelle Slager; Sebastiaan P. van Kessel; Kèvin Knoops; Robin A. Sorg; Jing-Ren Zhang; Jan-Willem Veening

Genome-wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae. However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon-sequencing (Tn-Seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high-content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi-based depletion. We show that SPD1416 and SPD1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD1198 and SPD1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clpproteolytic system in regulation of competence development and we show that ClpX is the essential ATPase responsible for ClpP-dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.

Collaboration


Dive into the Jelle Slager's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morten Kjos

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge