Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelle Wieme is active.

Publication


Featured researches published by Jelle Wieme.


Chemistry of Materials | 2016

Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion

Sven M. J. Rogge; Jelle Wieme; Louis Vanduyfhuys; Steven Vandenbrande; Guillaume Maurin; Toon Verstraelen; Michel Waroquier; Veronique Van Speybroeck

In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials.


Chemistry: A European Journal | 2016

A Breathing Zirconium Metal–Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation

Bart Bueken; Frederik Vermoortele; Matthew J. Cliffe; Michael T. Wharmby; Damien Foucher; Jelle Wieme; Louis Vanduyfhuys; Charlotte Martineau; Norbert Stock; Francis Taulelle; Veronique Van Speybroeck; Andrew L. Goodwin; Dirk E. De Vos

The isoreticular analogue of the metal-organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7-10 unit cells.


Journal of Physical Chemistry C | 2016

Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations

Jelle Wieme; Louis Vanduyfhuys; Sven M. J. Rogge; Michel Waroquier; Veronique Van Speybroeck

The flexibility of three MIL-47(V)-type materials (MIL-47, COMOC-2, and COMOC-3) has been explored by constructing the pressure versus volume and free energy versus volume profiles at various temperatures ranging from 100 to 400 K. This is done with first-principles-based force fields using the recently proposed QuickFF parametrization protocol. Specific terms were added for the materials at hand to describe the asymmetry of the one-dimensional vanadium-oxide chain and to account for the flexibility of the organic linkers. The force fields are used in a series of molecular dynamics simulations at fixed volumes but varying unit cell shapes. The three materials show a distinct pressure–volume behavior, which underlines the ability to tune the mechanical properties by varying the linkers toward different applications such as nanosprings, dampers, and shock absorbers.


Journal of Chemical Theory and Computation | 2017

Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations

Ruben Demuynck; Sven M. J. Rogge; Louis Vanduyfhuys; Jelle Wieme; Michel Waroquier; Veronique Van Speybroeck

In order to reliably predict and understand the breathing behavior of highly flexible metal–organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials.


CrystEngComm | 2015

Fine-tuning the theoretically predicted structure of MIL-47(V) with the aid of powder X-ray diffraction

Thomas Bogaerts; Louis Vanduyfhuys; Danny Vanpoucke; Jelle Wieme; Michel Waroquier; Pascal Van Der Voort; Veronique Van Speybroeck

The structural characterization of complex crystalline materials such as metal organic frameworks can prove a very difficult challenge both for experimentalists as for theoreticians. From theory, the flat potential energy surface of these highly flexible structures often leads to different geometries that are energetically very close to each other. In this work a distinction between various computationally determined structures is made by comparing experimental and theoretically derived X-ray diffractograms which are produced from the materials geometry. The presented approach allows to choose the most appropriate geometry of a MIL-47(V) MOF and even distinguish between different electronic configurations that induce small structural changes. Moreover the techniques presented here are used to verify the applicability of a newly developed force field for this material. The discussed methodology is of significant importance for modelling studies where accurate geometries are crucial, such as mechanical properties and adsorption of guest molecules.


Journal of Physical Chemistry C | 2018

Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach

Alexander E. J. Hoffman; Louis Vanduyfhuys; Irena Nevjestic; Jelle Wieme; Sven M. J. Rogge; Hannes Depauw; Pascal Van Der Voort; Henk Vrielinck; Veronique Van Speybroeck

In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.


Journal of Materials Chemistry | 2017

Mechanical properties of a gallium fumarate metal–organic framework: a joint experimental-modelling exploration

Padmini Ramaswamy; Jelle Wieme; Elsa Alvarez; Louis Vanduyfhuys; Jean-Paul Itié; Paul Fabry; Veronique Van Speybroeck; Christian Serre; Pascal G. Yot; Guillaume Maurin

A gallium analogue of the commercially available Al-fumarate MOF A520 – recently identified as isotypic to MIL-53(Al)-BDC – has been synthesized for the first time and further characterized in its hydrated and dehydrated forms. The structural response under applied mechanical pressure of this MIL-53(Ga)-FA solid was investigated using advanced experimental techniques coupled with computational tools. Hg porosimetry and high-pressure X-ray powder diffraction (XRPD) experiments evidenced that the pristine dehydrated large pore form undergoes an irreversible structure contraction upon an applied pressure of 85 MPa with an associated volume change of ∼14% which makes this material promising for mechanical energy storage applications, in particular as a shock absorber. The breathing behavior was further rationalized by performing a series of periodic Density Functional Theory (DFT) calculations with the construction of an energy profile as a function of volume for both MIL-53(Ga)-FA and its aluminium analogue. As such we unravelled the microscopic origin of the difference in pressure-induced behavior for the aluminium and gallium fumarate based materials.


Nature Communications | 2018

Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals

Louis Vanduyfhuys; Sven M. J. Rogge; Jelle Wieme; Steven Vandenbrande; Guillaume Maurin; Michel Waroquier; Veronique Van Speybroeck

Knowledge of the thermodynamic potential in terms of the independent variables allows to characterize the macroscopic state of the system. However, in practice, it is difficult to access this potential experimentally due to irreversible transitions that occur between equilibrium states. A showcase example of sudden transitions between (meta)stable equilibrium states is observed for soft porous crystals possessing a network with long-range structural order, which can transform between various states upon external stimuli such as pressure, temperature and guest adsorption. Such phase transformations are typically characterized by large volume changes and may be followed experimentally by monitoring the volume change in terms of certain external triggers. Herein, we present a generalized thermodynamic approach to construct the underlying Helmholtz free energy as a function of the state variables that governs the observed behaviour based on microscopic simulations. This concept allows a unique identification of the conditions under which a material becomes flexible.Knowledge of the thermodynamic potential is crucial to characterize the macroscopic state of soft porous crystals. Here, the authors present a generalized thermodynamic approach to construct the Helmholtz free energy and identify the conditions under which a material becomes flexible.


Journal of Computational Chemistry | 2018

Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal-organic frameworks

Louis Vanduyfhuys; Steven Vandenbrande; Jelle Wieme; Michel Waroquier; Toon Verstraelen; Veronique Van Speybroeck

QuickFF was originally launched in 2015 to derive accurate force fields for isolated and complex molecular systems in a quick and easy way. Apart from the general applicability, the functionality was especially tested for metal–organic frameworks (MOFs), a class of hybrid materials consisting of organic and inorganic building blocks. Herein, we launch a new release of the QuickFF protocol which includes new major features to predict structural, vibrational, mechanical and thermal properties with greater accuracy, without compromising its robustness and transparent workflow. First, the ab initio data necessary for the fitting procedure may now also be derived from periodic models for the molecular system, as opposed to the earlier cluster‐based models. This is essential for an accurate description of MOFs with one‐dimensional metal‐oxide chains. Second, cross terms that couple internal coordinates (ICs) and anharmonic contributions for bond and bend terms are implemented. These features are essential for a proper description of vibrational and thermal properties. Third, the fitting scheme was modified to improve robustness and accuracy. The new features are tested on MIL‐53(Al), MOF‐5, CAU‐13 and NOTT‐300. As expected, periodic input data are proven to be essential for a correct description of structural, vibrational and thermodynamic properties of MIL‐53(Al). Bulk moduli and thermal expansion coefficients of MOF‐5 are very accurately reproduced by static and dynamic simulations using the newly derived force fields which include cross terms and anharmonic corrections. For the flexible materials CAU‐13 and NOTT‐300, the transition pressure is accurately predicted provided cross terms are taken into account.


Journal of Chemical Theory and Computation | 2018

A protocol for identifying accurate collective variables in enhanced molecular dynamics simulations for the description of structural transformations in flexible metal-organic frameworks

Ruben Demuynck; Jelle Wieme; Sven M. J. Rogge; Karen D Dedecker; Louis Vanduyfhuys; Michel Waroquier; Veronique Van Speybroeck

Various kinds of flexibility have been observed in metal–organic frameworks, which may originate from the topology of the material or the presence of flexible ligands. The construction of free energy profiles describing the full dynamical behavior along the phase transition path is challenging since it is not trivial to identify collective variables able to identify all metastable states along the reaction path. In this work, a systematic three-step protocol to uniquely identify the dominant order parameters for structural transformations in flexible metal–organic frameworks and subsequently construct accurate free energy profiles is presented. Methodologically, this protocol is rooted in the time-structure based independent component analysis (tICA), a well-established statistical modeling technique embedded in the Markov state model methodology and often employed to study protein folding, that allows for the identification of the slowest order parameters characterizing the structural transformation. To ensure an unbiased and systematic identification of these order parameters, the tICA decomposition is performed based on information from a prior replica exchange (RE) simulation, as this technique enhances the sampling along all degrees of freedom of the system simultaneously. From this simulation, the tICA procedure extracts the order parameters—often structural parameters—that characterize the slowest transformations in the material. Subsequently, these order parameters are adopted in traditional enhanced sampling methods such as umbrella sampling, thermodynamic integration, and variationally enhanced sampling to construct accurate free energy profiles capturing the flexibility in these nanoporous materials. In this work, the applicability of this tICA-RE protocol is demonstrated by determining the slowest order parameters in both MIL-53(Al) and CAU-13, which exhibit a strongly different type of flexibility. The obtained free energy profiles as a function of this extracted order parameter are furthermore compared to the profiles obtained when adopting less-suited collective variables, indicating the importance of systematically selecting the relevant order parameters to construct accurate free energy profiles for flexible metal–organic frameworks, which is in correspondence with experimental findings. The method succeeds in mapping the full free energy surface in terms of appropriate collective variables for MOFs exhibiting linker flexibility. For CAU-13, we show the decreased stability of the closed pore phase by systematically adding adsorbed xylene molecules in the framework.

Collaboration


Dive into the Jelle Wieme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge