Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenifer C. Croce is active.

Publication


Featured researches published by Jenifer C. Croce.


Methods of Molecular Biology | 2008

Evolution of the Wnt pathways.

Jenifer C. Croce; David R. McClay

Wnt proteins mediate the transduction of at least three major signaling pathways that play central roles in many early and late developmental decisions. They control diverse cellular behaviors, such as cell fate decisions, proliferation, and migration, and are involved in many important embryological events, including axis specification, gastrulation, and limb, heart, or neural development. The three major Wnt pathways are activated by ligands, the Wnts, which clearly belong to the same gene family. However, their signal is then mediated by three separate sets of extracellular, cytoplasmic, and nuclear components that are pathway-specific and that distinguish each of them. Homologs of the Wnt genes and of the Wnt pathways components have been discovered in many eukaryotic model systems and functional investigations have been carried out for most of them. This review extracts available data on the Wnt pathways, from the protist Dictyostelium discoideum to humans, and provides from an evolutionary prospective the overall molecular and functional conservation of the three Wnt pathways and their activators throughout the eukaryotic superkingdom.


Development | 2010

Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo

Jenifer C. Croce; David R. McClay

Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.


Development | 2006

Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.

Jenifer C. Croce; Louise Duloquin; Guy Lhomond; David R. McClay; Christian Gache

Wnt signaling pathways play key roles in numerous developmental processes both in vertebrates and invertebrates. Their signals are transduced by Frizzled proteins, the cognate receptors of the Wnt ligands. This study focuses on the role of a member of the Frizzled family, Fz5/8, during sea urchin embryogenesis. During development, Fz5/8 displays restricted expression, beginning at the 60-cell stage in the animal domain and then from mesenchyme blastula stage, in both the animal domain and a subset of secondary mesenchyme cells (SMCs). Loss-of-function analyses in whole embryos and chimeras reveal that Fz5/8 is not involved in the specification of the main embryonic territories. Rather, it appears to be required in SMCs for primary invagination of the archenteron, maintenance of endodermal marker expression and apical localization of Notch receptors in endodermal cells. Furthermore, among the three known Wnt pathways, Fz5/8 appears to signal via the planar cell polarity pathway. Taken together, the results suggest that Fz5/8 plays a crucial role specifically in SMCs to control primary invagination during sea urchin gastrulation.


Mechanisms of Development | 2001

ske-T, a T-box gene expressed in the skeletogenic mesenchyme lineage of the sea urchin embryo.

Jenifer C. Croce; Guy Lhomond; Jean-Claude Lozano; Christian Gache

T-box transcription factors regulate many developmental processes. Here we report the cloning and expression analysis of ske-T, a novel sea urchin T-box gene. The distribution of the maternal ske-T transcript is uniform in the egg and early embryonic stages while zygotic expression is restricted to the skeletogenic mesenchyme lineage.


Development | 2006

Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo

Eric Röttinger; Jenifer C. Croce; Guy Lhomond; Lydia Besnardeau; Christian Gache; Thierry Lepage

Studies in Caenorhabditis elegans and vertebrates have established that the MAP kinase-related protein NLK counteracts Wnt signalling by downregulating the transcription factor TCF. Here, we present evidence that during early development of the sea urchin embryo, NLK is expressed in the mesodermal precursors in response to Notch signalling and directs their fate by downregulating TCF. The expression pattern of nlk is strikingly similar to that of Delta and the two genes regulate the expression of each other. nlk overexpression, like ectopic activation of Notch signalling, provoked massive formation of mesoderm and associated epithelial mesenchymal transition. NLK function was found to be redundant with that of the MAP kinase ERK during mesoderm formation and to require the activity of the activating kinase TAK1. In addition, the sea urchin NLK, like its vertebrate counterpart, antagonizes the activity of the transcription factor TCF. Finally, activating the expression of a TCF-VP16 construct at blastula stages strongly inhibits endoderm and mesoderm formation, indicating that while TCF activity is required early for launching the endomesoderm gene regulatory network, it has to be downregulated at blastula stage in the mesodermal lineage. Taken together, our results indicate that the evolutionarily conserved TAK/NLK regulatory pathway has been recruited downstream of the Notch/Delta pathway in the sea urchin to switch off TCF-β-catenin signalling in the mesodermal territory, allowing precursors of this germ layer to segregate from the endomesoderm.


Development | 2011

Wnt6 activates endoderm in the sea urchin gene regulatory network

Jenifer C. Croce; Ryan Range; Shu-Yu Wu; Esther Miranda; Guy Lhomond; Jeff Chieh-fu Peng; Thierry Lepage; David R. McClay

In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.


Development | 2013

Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm

Daniel C. McIntyre; N. Winn Seay; Jenifer C. Croce; David R. McClay

The border between the posterior ectoderm and the endoderm is a location where two germ layers meet and establish an enduring relationship that also later serves, in deuterostomes, as the anatomical site of the anus. In the sea urchin, a prototypic deuterostome, the ectoderm-endoderm boundary is established before gastrulation, and ectodermal cells at the boundary are thought to provide patterning inputs to the underlying mesenchyme. Here we show that a short-range Wnt5 signal from the endoderm actively patterns the adjacent boundary ectoderm. This signal activates a unique subcircuit of the ectoderm gene regulatory network, including the transcription factors IrxA, Nk1, Pax2/5/8 and Lim1, which are ultimately restricted to subregions of the border ectoderm (BE). Surprisingly, Nodal and BMP2/4, previously shown to be activators of ectodermal specification and the secondary embryonic axis, instead restrict the expression of these genes to subregions of the BE. A detailed examination showed that endodermal Wnt5 functions as a short-range signal that activates only a narrow band of ectodermal cells, even though all ectoderm is competent to receive the signal. Thus, cells in the BE integrate positive and negative signals from both the primary and secondary embryonic axes to correctly locate and specify the border ectoderm.


Development | 2012

Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis

Guy Lhomond; David R. McClay; Christian Gache; Jenifer C. Croce

In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for β-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of β-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating β-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that β-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of β-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.


Genesis | 2014

A comprehensive survey of wnt and frizzled expression in the sea urchin Paracentrotus lividus

Nicolas Robert; Guy Lhomond; Michael Schubert; Jenifer C. Croce

WNT signaling is, in all multicellular animals, an essential intercellular communication pathway that is critical for shaping the embryo. At the molecular level, WNT signals can be transmitted by several transduction cascades, all activated chiefly by the binding of WNT ligands to receptors of the FRIZZLED family. The first step in assessing the biological functions of WNT signaling during embryogenesis is thus the establishment of the spatiotemporal expression profiles of wnt and frizzled genes in the course of embryonic development. To this end, using quantitative polymerase chain reaction, Northern blot, and in situ hybridization assays, we report here the comprehensive expression patterns of all 11 wnt and 4 frizzled genes present in the genome of the sea urchin Paracentrotus lividus during its embryogenesis. Our findings indicate that the expression of these wnt ligands and frizzled receptors is highly dynamic in both time and space. We further establish that all wnt genes are chiefly transcribed in the vegetal hemisphere of the embryo, whereas expression of the frizzled genes is distributed more widely across the embryonic territories. Thus, in P. lividus, WNT ligands might act both as short‐ and long‐range signaling molecules that may operate in all cell lineages and tissues to control various developmental processes during embryogenesis. genesis 52:235–250.


BMC Evolutionary Biology | 2017

Lineage-specific duplication of amphioxus retinoic acid degrading enzymes (CYP26) resulted in sub-functionalization of patterning and homeostatic roles.

João E. Carvalho; Maria Theodosiou; Jie Chen; Pascale Chevret; Susana Álvarez; Angel R. de Lera; Vincent Laudet; Jenifer C. Croce; Michael Schubert

BackgroundDuring embryogenesis, tight regulation of retinoic acid (RA) availability is fundamental for normal development. In parallel to RA synthesis, a negative feedback loop controlled by RA catabolizing enzymes of the cytochrome P450 subfamily 26 (CYP26) is crucial. In vertebrates, the functions of the three CYP26 enzymes (CYP26A1, CYP26B1, and CYP26C1) have been well characterized. By contrast, outside vertebrates, little is known about CYP26 complements and their biological roles. In an effort to characterize the evolutionary diversification of RA catabolism, we studied the CYP26 genes of the cephalochordate amphioxus (Branchiostoma lanceolatum), a basal chordate with a vertebrate-like genome that has not undergone the massive, large-scale duplications of vertebrates.ResultsIn the present study, we found that amphioxus also possess three CYP26 genes (CYP26-1, CYP26-2, and CYP26-3) that are clustered in the genome and originated by lineage-specific duplication. The amphioxus CYP26 cluster thus represents a useful model to assess adaptive evolutionary changes of the RA signaling system following gene duplication. The characterization of amphioxus CYP26 expression, function, and regulation by RA signaling demonstrated that, despite the independent origins of CYP26 duplicates in amphioxus and vertebrates, they convergently assume two main roles during development: RA-dependent patterning and protection against fluctuations of RA levels. Our analysis suggested that in amphioxus RA-dependent patterning is sustained by CYP26-2, while RA homeostasis is mediated by CYP26-1 and CYP26-3. Furthermore, comparisons of the regulatory regions of CYP26 genes of different bilaterian animals indicated that a CYP26-driven negative feedback system was present in the last common ancestor of deuterostomes, but not in that of bilaterians.ConclusionsAltogether, this work reveals the evolutionary origins of the RA-dependent regulation of CYP26 genes and highlights convergent functions for CYP26 enzymes that originated by independent duplication events, hence establishing a novel selective mechanism for the genomic retention of gene duplicates.

Collaboration


Dive into the Jenifer C. Croce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Lhomond

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Lhomond

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge