Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenni Kontkanen is active.

Publication


Featured researches published by Jenni Kontkanen.


Nature | 2014

A large source of low-volatility secondary organic aerosol

Mikael Ehn; Joel A. Thornton; E. Kleist; Mikko Sipilä; Heikki Junninen; Iida Pullinen; Monika Springer; Florian Rubach; R. Tillmann; Ben Lee; Felipe D. Lopez-Hilfiker; Stefanie Andres; Ismail-Hakki Acir; Matti P. Rissanen; Tuija Jokinen; Siegfried Schobesberger; Juha Kangasluoma; Jenni Kontkanen; Tuomo Nieminen; Theo Kurtén; Lasse B. Nielsen; Solvejg Jørgensen; Henrik G. Kjaergaard; Manjula R. Canagaratna; Miikka Dal Maso; Torsten Berndt; Tuukka Petäjä; Andreas Wahner; Veli-Matti Kerminen; Markku Kulmala

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth’s radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere–aerosol–climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Science | 2013

Direct Observations of Atmospheric Aerosol Nucleation

Markku Kulmala; Jenni Kontkanen; Heikki Junninen; Katrianne Lehtipalo; H. E. Manninen; Tuomo Nieminen; Tuukka Petäjä; Mikko Sipilä; Siegfried Schobesberger; Pekka Rantala; Alessandro Franchin; Tuija Jokinen; Emma Järvinen; Mikko Äijälä; Juha Kangasluoma; Jani Hakala; Pasi Aalto; Pauli Paasonen; Jyri Mikkilä; Joonas Vanhanen; Juho Aalto; Hannele Hakola; Ulla Makkonen; Taina M. Ruuskanen; Roy L. Mauldin; Jonathan Duplissy; Hanna Vehkamäki; Jaana Bäck; Aki Kortelainen; Ilona Riipinen

Aerosol Formation Most atmospheric aerosol particles result from a growth process that begins with atmospheric molecules and clusters, progressing to larger and larger sizes as they acquire other molecules, clusters, and particles. The initial steps of this process involve very small entities—with diameters of less than 2 nanometers—which have been difficult to observe. Kulmala et al. (p. 943; see the Perspective by Andreae) developed a sensitive observational protocol that allows these tiny seeds to be detected and counted, and they mapped out the process of aerosol formation in detail. Detailed aerosol measurements provide a consistent framework for the formation of particles from atmospheric gases. [Also see Perspective by Andreae] Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub–2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.


Science | 2016

New particle formation in the free troposphere: A question of chemistry and timing

Federico Bianchi; Jasmin Tröstl; Heikki Junninen; Carla Frege; S. Henne; C. R. Hoyle; Ugo Molteni; Erik Herrmann; Alexey Adamov; Nicolas Bukowiecki; Xuemeng Chen; Jonathan Duplissy; M. Gysel; Manuel A. Hutterli; Juha Kangasluoma; Jenni Kontkanen; Andreas Kürten; H. E. Manninen; S. Münch; Otso Peräkylä; Tuukka Petäjä; Linda Rondo; Christina Williamson; E. Weingartner; Joachim Curtius; Douglas R. Worsnop; Markku Kulmala; Josef Dommen; Urs Baltensperger

From neutral to new Many of the particles in the troposphere are formed in situ, but what fraction of all tropospheric particles do they constitute and how exactly are they made? Bianchi et al. report results from a high-altitude research station. Roughly half of the particles were newly formed by the condensation of highly oxygenated multifunctional compounds. A combination of laboratory results, field measurements, and model calculations revealed that neutral nucleation is more than 10 times faster than ion-induced nucleation, that particle growth rates are size-dependent, and that new particle formation occurs during a limited time window. Science, this issue p. 1109 New particles form in the free troposphere mainly through condensation of highly oxygenated compounds. New particle formation (NPF) is the source of over half of the atmosphere’s cloud condensation nuclei, thus influencing cloud properties and Earth’s energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid–ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.


Nature | 2016

Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3

Mikko Sipilä; Nina Sarnela; Tuija Jokinen; Henning Henschel; Heikki Junninen; Jenni Kontkanen; Stefanie Richters; Juha Kangasluoma; Alessandro Franchin; Otso Peräkylä; Matti P. Rissanen; Mikael Ehn; Hanna Vehkamäki; Theo Kurtén; Torsten Berndt; Tuukka Petäjä; Douglas R. Worsnop; Darius Ceburnis; Veli-Matti Kerminen; Markku Kulmala; Colin O’Dowd

Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.


Scientific Reports | 2017

Solar eclipse demonstrating the importance of photochemistry in new particle formation

Tuija Jokinen; Jenni Kontkanen; Katrianne Lehtipalo; H. E. Manninen; Juho Aalto; Albert Porcar-Castell; Olga Garmash; Tuomo Nieminen; Mikael Ehn; Juha Kangasluoma; Heikki Junninen; Janne Levula; Jonathan Duplissy; Lauri Ahonen; Pekka Rantala; Liine Heikkinen; Chao Yan; Mikko Sipilä; Douglas R. Worsnop; Jaana Bäck; Tuukka Petäjä; Veli-Matti Kerminen; Markku Kulmala

Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.


Science | 2018

Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity

Lei Yao; Olga Garmash; Federico Bianchi; Jun Zheng; Chao Yan; Jenni Kontkanen; Heikki Junninen; Stephany Buenrostro Mazon; Mikael Ehn; Pauli Paasonen; Mikko Sipilä; Mingyi Wang; Xinke Wang; Shan Xiao; Hangfei Chen; Yiqun Lu; Bowen Zhang; Dongfang Wang; Qingyan Fu; Fuhai Geng; Li Li; Hongli Wang; Liping Qiao; Xin Yang; Jianmin Chen; Veli-Matti Kerminen; Tuukka Petäjä; Douglas R. Worsnop; Markku Kulmala; Lin Wang

A puzzle of new particles Atmospheric particulates can be produced by emissions or form de novo. New particle formation usually occurs in relatively clean air. This is because preexisting particles in the atmosphere will scavenge the precursors of new particles and suppress their formation. However, observations in some heavily polluted megacities have revealed substantial rates of new particle formation despite the heavy loads of ambient aerosols. Yao et al. investigated new particle formation in Shanghai and describe the conditions that make this process possible. The findings will help inform policy decisions about how to reduce air pollution in these types of environments. Science, this issue p. 278 Atmospheric new particle formation in heavily polluted cities can occur in certain chemical environments. Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H2SO4) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H2SO4) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H2SO4–dimethylamine (DMA)–water (H2O) nucleation, including sulfuric acid dimers and H2SO4-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range

Dominik Stolzenburg; Lukas Fischer; A. Vogel; Martin Heinritzi; Meredith Schervish; Mario Simon; Andrea Christine Wagner; Lubna Dada; Lauri Ahonen; A. Amorim; Andrea Baccarini; Paulus Salomon Bauer; Bernhard Baumgartner; Anton Bergen; Federico Bianchi; Martin Breitenlechner; Sophia Brilke; Stephany Buenrostro Mazon; Dexian Chen; Antonio Dias; Danielle C. Draper; Jonathan Duplissy; Imad El Haddad; Henning Finkenzeller; Carla Frege; Claudia Fuchs; Olga Garmash; H. Gordon; Xucheng He; Johanna Helm

Significance Aerosol particles can form and grow by gas-to-particle conversion and eventually act as seeds for cloud droplets, influencing global climate. Volatile organic compounds emitted from plants are oxidized in the atmosphere, and the resulting products drive particle growth. We measure particle growth by oxidized biogenic vapors with a well-controlled laboratory setup over a wide range of tropospheric temperatures. While higher temperatures lead to increased reaction rates and concentrations of highly oxidized molecules, lower temperatures allow additional, but less oxidized, species to condense. We measure rapid growth over the full temperature range of our study, indicating that organics play an important role in aerosol growth throughout the troposphere. Our finding will help to sharpen the predictions of global aerosol models. Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from −25 °C to 25 °C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.


Atmospheric Chemistry and Physics | 2018

Comprehensive analysis of particle growth rates from nucleationmode to cloud condensation nuclei in Boreal forest

Pauli Paasonen; Maija Peltola; Jenni Kontkanen; Heikki Junninen; Veli-Matti Kerminen; Markku Kulmala

Growth of aerosol particles to sizes at which they can act as cloud condensation nuclei (CCN) is a crucial factor in estimating the current and future impacts of aerosol cloud climate interactions. Growth rates are typically determined for particles with diameters (dP) smaller than 40 nm immediately after a regional new particle formation (NPF) event. These 15 growth rates are often taken as representatives for the particle growth until CCN sizes (dP > 50-100 nm). In modelling frameworks, the concentration of the condensable vapours causing the growth is typically calculated with steady state assumptions, where the condensation sink is the only loss term for the vapours. Additionally, the growth to CCN sizes is represented with the condensation of extremely low-volatile vapours and gas-particle partitioning of semi-volatile vapours. Here, we use a novel automatic method to determine growth rates (GR) from below 10 nm to hundreds of nanometres from a 20 20-years long particle size distribution data set in Boreal forest. With this method, we are able to detect growth rates also at other times than immediately after a NPF event. We show that the GR increases with an increasing oxidation rate of monoterpenes, which is closely coupled with the ambient temperature. Based on our analysis, the oxidation reactions of monoterpenes with ozone, hydroxyl radical and nitrate radical all are capable of producing vapours that contribute to the particle growth in the studied size ranges. We find that GR increases with particle diameter, resulting in up to three-fold GRs 25 for particles with dP ~100 nm in comparison to those with dP ~10 nm. We use a single particle model to show that this increase in GR can be explained with aerosol-phase reactions, in which semi-volatile vapours form non-volatile dimers. Finally, our analysis reveals that the GR of particles with dP < 100 nm is not limited by the condensation sink, even though the GR of larger particles is. Our findings suggest that in the Boreal continental environment, the formation of CCN from NPF or sub-100 nm emissions is more effective than previously thought, and that the formation of CCN is not as strongly 30 self-limiting process as the previous estimates have suggested. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-169 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 16 March 2018 c


Atmospheric Chemistry and Physics | 2017

Amines in boreal forest air at SMEAR II station in Finland

Marja Hemmilä; Heidi Hellén; Aki Virkkula; Ulla Makkonen; Arnaud P. Praplan; Jenni Kontkanen; Markku Kulmala; Hannele Hakola

We measured amines in boreal forest air in Finland both in gas and particle phases with 1 h time resolution using an online ion chromatograph (instrument for Measuring AeRosols and Gases in Ambient Air – MARGA) connected to an electrospray ionization quadrupole mass spectrometer (MS). The developed MARGA-MS method was able to separate and detect seven different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA), and butylamine (BA). The detection limits of the method for amines were low (0.2–3.1 ng m−3), the accuracy of ICMS analysis was 11–37 %, and the precision 10–15 %. The proper measurements in the boreal forest covered about 8 weeks between March and December 2015. The amines were found to be an inhomogeneous group of compounds, showing different seasonal and diurnal variability. Total MMA (MMA(tot)) peaked together with the sum of ammonia and ammonium ions already in March. In March, monthly means for MMA were< 2.4 and 6.8± 9.1 ng m−3 in gas and aerosol phases, respectively, and for NH3 and NH+4 these were 52± 16 and 425± 371 ng m−3, respectively. Monthly medians in March for MMA(tot), NH3, and NH+4 were < 2.4, 19 and 90 ng m−3, respectively. DMA(tot) and TMA(tot) had summer maxima indicating biogenic sources. We observed diurnal variation for DMA(tot) but not for TMA(tot). The highest concentrations of these compounds were measured in July. Then, monthly means for DMA were < 3.1 and 8.4± 3.1 ng m−3 in gas and aerosol phases, respectively, and for TMA these were 0.4± 0.1 and 1.8± 0.5 ng m−3. Monthly medians in July for DMA were below the detection limit (DL) and 4.9 ng m−3 in gas and aerosol phases, respectively, and for TMA these were 0.4 and 1.4 ng m−3. When relative humidity of air was > 90 %, gas-phase DMA correlated well with 1.1–2 nm particle number concentration (R2 = 0.63) suggesting that it participates in atmospheric clustering. EA concentrations were low all the time. Its July means were < 0.36 and 0.4± 0.4 ng m−3 in gas and aerosol phases, respectively, but individual concentration data correlated well with monoterpene concentrations in July. Monthly means of PA and BA were below detection limits at all times.


NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013

Determination of the size distribution of recombination products from atmospheric measurements

Jenni Kontkanen; Tuomo Nieminen; H. E. Manninen; Katrianne Lehtipalo; Veli-Matti Kerminen; K. E. J. Lehtinen; Markku Kulmala

The role of ion-ion recombination in new particle formation is still unclear. In this work, we present a new method to estimate the size distribution of recombination products from atmospheric measurements. By applying our method to size distributions of charged and neutral clusters measured in Hyytiala, Finland, we show that only a minor fraction of all sub-2nm neutral clusters originate from ion-ion recombination in boreal forest conditions.

Collaboration


Dive into the Jenni Kontkanen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge