Jennifa Gosling
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifa Gosling.
Nature | 1998
Landin Boring; Jennifa Gosling; Michael L. Cleary; Israel F. Charo
Chemokines are proinflammatory cytokines that function in leukocyte chemoattraction and activation and have recently been shown to block the HIV-1 infection of target cells through interactions with chemokine receptors,. In addition to their function in viral disease, chemokines have been implicated in the pathogenesis of atherosclerosis. Expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) is upregulated in human atherosclerotic plaques,, in arteries of primates on a hypercholesterolaemic diet and in vascular endothelial and smooth muscle cells exposed to minimally modified lipids,. To determine whether MCP-1 is causally related to the development of atherosclerosis, we generated mice that lack CCR2, the receptor for MCP-1 (ref. 7), and crossed them with apolipoprotein (apo) E-null mice which develop severe atherosclerosis. Here we show that the selective absence of CCR2 decreases lesion formation markedly in apoE−/− mice but has no effect on plasma lipid or lipoprotein concentrations. These data reveal a role for MCP-1 in the development of early atherosclerotic lesions and suggest that upregulation of this chemokine by minimally oxidized lipids is an important link between hyperlipidaemia and fatty streak formation.
Journal of Clinical Investigation | 1997
Landin Boring; Jennifa Gosling; Stephen W. Chensue; Steven L. Kunkel; Robert V. Farese; Hal E. Broxmeyer; Israel F. Charo
Monocyte chemoattractant protein-1 (MCP-1) is a potent agonist for mononuclear leukocytes and has been implicated in the pathogenesis of atherosclerosis and granulomatous lung disease. To determine the role of MCP-1 and related family members in vivo, we used homologous recombination in embryonic stem cells to generate mice with a targeted disruption of C-C chemokine receptor 2 (CCR2), the receptor for MCP-1. CCR2-/- mice were born at the expected Mendelian ratios and developed normally. In response to thioglycollate, the recruitment of peritoneal macrophages decreased selectively. In in vitro chemotaxis assays, CCR2-/- leukocytes failed to migrate in response to MCP-1. Granulomatous lung disease was induced in presensitized mice by embolization with beads coupled to purified protein derivative (PPD) of Mycobacterium bovis. As compared with wild-type littermates, CCR2-/- mice had a decrease in granuloma size accompanied by a dramatic decrease in the level of interferon gamma in the draining lymph nodes. Production of interferon gamma was also decreased in PPD-sensitized splenocytes from CCR2-/- mice and in naive splenocytes activated by concanavalin A. We conclude that CCR2-/- mice have significant defects in both delayed-type hypersensitivity responses and production of Th1-type cytokines. These data suggest an important and unexpected role for CCR2 activation in modulating the immune response, as well as in recruiting monocytes/macrophages to sites of inflammation.
Journal of Clinical Investigation | 1999
Jennifa Gosling; Sarah Slaymaker; Long Gu; Susan Tseng; Constance H. Zlot; Stephen G. Young; Barrett J. Rollins; Israel F. Charo
The earliest recognizable atherosclerotic lesions are fatty streaks composed of lipid-laden macrophages (foam cells). Circulating monocytes are the precursors of these foam cells, but the molecular mechanisms that govern macrophage trafficking through the vessel wall are poorly understood. Monocyte chemoattractant protein-1 (MCP-1), a member of the chemokine (chemotactic cytokine) family, is a potent monocyte agonist that is upregulated by oxidized lipids. Recent studies in hypercholesterolemic mice lacking apo E or the low-density lipoprotein receptor have suggested a role for MCP-1 in monocyte recruitment to early atherosclerotic lesions. To determine if MCP-1 is critically involved in atherogenesis in the setting of elevated physiological plasma cholesterol levels, we deleted the MCP-1 gene in transgenic mice expressing human apo B. Here we report that the absence of MCP-1 provides dramatic protection from macrophage recruitment and atherosclerotic lesion formation in apo B transgenic mice, without altering lipoprotein metabolism. Taken together with the results of earlier studies, these data provide compelling evidence that MCP-1 plays a critical role in the initiation of atherosclerosis.
Journal of Biological Chemistry | 1996
Carol J. Raport; Jennifa Gosling; Vicki L. Schweickart; Patrick W. Gray; Israel F. Charo
Chemokines affect leukocyte chemotactic and activation activities through specific G protein-coupled receptors. In an effort to map the closely linked CC chemokine receptor genes, we identified a novel chemokine receptor encoded 18 kilobase pairs downstream of the monocyte chemoattractant protein-1 (MCP-1) receptor (CCR2) gene on human chromosome 3p21. The deduced amino acid sequence of this novel receptor, designated CCR5, is most similar to CCR2B, sharing 71% identical residues. Transfected cells expressing the receptor bind RANTES (regulated on activation normal T cell expressed), MIP-1β, and MIP-1α with high affinity and generate inositol phosphates in response to these chemokines. This same combination of chemokines has recently been shown to potently inhibit human immunodeficiency virus replication in human peripheral blood leukocytes (Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Science 270, 1811-1815). CCR5 is expressed in lymphoid organs such as thymus and spleen, as well as in peripheral blood leukocytes, including macrophages and T cells, and is the first example of a human chemokine receptor that signals in response to MIP-1β.
Science | 1996
Jennifa Gosling; Felipe S. Monteclaro; Christian Franci; Laura Digilio; Israel F. Charo; Mark A. Goldsmith
The human β-chemokine receptor CCR5 is an important cofactor for entry of human immunodeficiency virus-type 1 (HIV-1). The murine form of CCR5, despite its 82 percent identity to the human form, was not functional as an HIV-1 coreceptor. HIV-1 entry function could be reconstituted by fusion of various individual elements derived from the extracellular region of human CCR5 onto murine CCR5. Analysis of chimeras containing elements from human CCR5 and human CCR2B suggested that a complex structure rather than single contact sites is responsible for facilitation of viral entry. Further, certain chimeras lacking the domains necessary to signal in response to their natural chemokine ligands retained vigorous HIV-1 coreceptor activity.
Journal of Immunology | 2000
Jennifa Gosling; Daniel J. Dairaghi; Yu Wang; Michael R. Hanley; Dale Talbot; Zhenhua Miao; Thomas J. Schall
Searching for new receptors of dendritic cell- and T cell-active chemokines, we used a combination of techniques to interrogate orphan chemokine receptors. We report here on human CCX CKR, previously represented only by noncontiguous expressed sequence tags homologous to bovine PPR1, a putative gustatory receptor. We employed a two-tiered process of ligand assignment, where immobilized chemokines constructed on stalks (stalkokines) were used as bait for adhesion of cells expressing CCX CKR. These cells adhered to stalkokines representing ELC, a chemokine previously thought to bind only CCR7. Adhesion was abolished in the presence of soluble ELC, SLC (CCR7 ligands), and TECK (a CCR9 ligand). Complete ligand profiles were further determined by radiolabeled ligand binding and competition with >80 chemokines. ELC, SLC, and TECK comprised high affinity ligands (IC50 <15 nM); lower affinity ligands include BLC and vMIP-II (IC50 <150 nM). With its high affinity for CC chemokines and homology to CC receptors, we provisionally designate this new receptor CCR10.
Journal of Immunology | 2000
Kate Blease; Borna Mehrad; Theodore J. Standiford; Nicholas W. Lukacs; Jennifa Gosling; Landin Boring; Israel F. Charo; Steven L. Kunkel; Cory M. Hogaboam
Allergic responses to Aspergillus species exacerbate asthma and cystic fibrosis. The natural defense against live Aspergillus fumigatus spores or conidia depends on the recruitment and activation of mononuclear and polymorphonuclear leukocytes, events that are dependent on chemotactic cytokines. In this study, we explored the relative contribution of the monocyte chemoattractant protein-1 receptor, CCR2, in the pulmonary response to A. fumigatus conidia. Following sensitization to soluble A. fumigatus Ags, mice lacking CCR2 due to targeted deletion were markedly more susceptible to the injurious effects of an intrapulmonary challenge with live conidia compared with mice that expressed CCR2 or CCR2+/+. CCR2−/− mice exhibited a major defect in the recruitment of polymorphonuclear cells, but these mice also had significantly more eosinophils and lymphocytes in bronchoalveolar lavage samples. CCR2−/− mice also had significant increases in serum levels of total IgE and whole lung levels of IL-5, IL-13, eotaxin, and RANTES compared with CCR2+/+ mice. Airway inflammation, hyper-responsiveness to spasmogens, and subepithelial fibrosis were significantly enhanced in CCR2−/− mice compared with CCR2+/+ mice after the conidia challenge. Thus, these findings demonstrate that CCR2 plays an important role in the immune response against A. fumigatus, thereby limiting the allergic airway inflammatory and remodeling responses to this fungus.
European Journal of Immunology | 2000
Arnaud Foussat; Aurore Coulomb-L'Hermine; Jennifa Gosling; Roman Krzysiek; Ingrid Durand-Gasselin; Thomas J. Schall; Axel Balian; Yolande Richard; Pierre Galanaud; Dominique Emilie
Expression and function of the fractalkine receptor CX3CR1 by T lymphocyte subpopulations was evaluated in healthy individuals. In CD8+ T lymphocytes, CX3CR1 was expressed by and functional in both CD45RO– and CD45RO+ cells. In CD4+ T lymphocytes, CX3CR1 was expressed mainly by CD45RO+ cells, and almost exclusively by activated HLA‐DR+ T lymphocytes. This receptor was functional in CD45RO+ cells, but not in CD45RO– cells. Expression of fractalkine was detected by in situ hybridization and immunohistochemistry in endothelial cells of normal lung and thymus. In hyperplastic lymph nodes, fractalkine was expressed by endothelial cells of high endothelial venules and of subcapsular vessels, by follicular dendritic cells (FDC) and by some follicle lymphocytes. Fractalkine mRNA was constitutively present in the HK FDC‐like cell line, and it was induced in vitro in B lymphocytes stimulated by an anti‐μ or by a CD40 mAb. These findings indicate that fractalkine may contribute to the recruitment of effector T helper lymphocytes, either in peripheral tissues or in lymphoid organs. In these tissues, fractalkine and its receptor may favor contact within follicles between activated T helper lymphocytes, activated B lymphocytes and FDC, thus contributing to the maturation of the B lymphocyte response.
Journal of Biological Chemistry | 1996
Landin Boring; Jennifa Gosling; Felipe S. Monteclaro; Aldons J. Lusis; Chia-Lin Tsou; Israel F. Charo
We have isolated cDNA clones that encode two closely related, murine C-C chemokine receptors. Both receptors are members of the G-protein-coupled, seven-transmembrane domain family of receptors and are most closely related to the human monocyte chemoattractant protein 1 receptor. Expression of each of the receptors was detected in murine monocyte/macrophage cell lines, but not in nonhematopoietic lines. Expression of these receptors in Xenopus oocytes revealed that one receptor signaled in response to low nanomolar concentrations of murine JE, whereas the second receptor was activated by murine macrophage inflammatory protein (MIP) 1α and the human chemokines MIP-1β and RANTES. Binding studies revealed high affinity binding of radiolabeled mJE to the mJE receptor and murine MIP-1α to the second receptor. Chromosomal localization indicated that the two receptor genes were clustered within 80 kilobases of each other on mouse chromosome 9. Creation of receptor chimeras suggested that the amino terminus was critically involved in mediating signal transduction and ligand specificity of the mJE receptor, but not the mMIP-1α receptor. The identification and cloning of two functional murine chemokine receptors provides important new tools for investigating the roles of these potent cytokines in vivo.
American Journal of Pathology | 2000
Cory M. Hogaboam; Cynthia L. Bone-Larson; Matthew L. Steinhauser; Akihiro Matsukawa; Jennifa Gosling; Landin Boring; Israel F. Charo; Kenneth J. Simpson; Nicholas W. Lukacs; Steven L. Kunkel
Monocyte chemoattractant protein-1 is one of the major C-C chemokines that has been implicated in liver injury. The C-C chemokine receptor, CCR2, has been identified as the primary receptor that mediates monocyte chemoattractant protein-1 (MCP-1) responses in the mouse. Accordingly, the present study addressed the role of CCR2 in mice acutely challenged with acetaminophen (APAP). Mice genetically deficient in CCR2 (CCR2(-/-)) and their wild-type counterparts (CCR2(+/+)) were fasted for 10 hours before receiving an intraperitoneal injection of APAP (300 mg/kg). Liver and serum samples were removed from both groups of mice before and at 24 and 48 hours post APAP. Significantly elevated levels of MCP-1 were detected in liver samples from CCR2(+/+) and CCR2(-/-) mice at 24 hours post-APAP. Although CCR2(+/+) mice exhibited no liver injury at any time after receiving APAP, CCR2(-/-) mice exhibited marked evidence of necrotic and TUNEL-positive cells in the liver, particularly at 24 hours post-APAP. Enzyme-linked immunosorbent assay analysis of liver homogenates from both groups of mice at the 24 hours time point revealed that liver tissue from CCR2(-/-) mice contained significantly greater amounts of immunoreactive IFN-gamma and TNF-alpha. The in vivo immunoneutralization of IFN-gamma or TNF-alpha significantly attenuated APAP-induced liver injury in CCR2(-/-) mice and increased hepatic IL-13 levels. Taken together, these findings demonstrate that CCR2 expression in the liver provides a hepatoprotective effect through its regulation of cytokine generation during APAP challenge.