Jennifer A. Evans
Morehouse School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer A. Evans.
Progress in Molecular Biology and Translational Science | 2013
Jennifer A. Evans; Alec J. Davidson
Daily rhythms in behavior and physiology are programmed by a hierarchical collection of biological clocks located throughout the brain and body, known as the circadian system. Mounting evidence indicates that disruption of circadian regulation is associated with a wide variety of adverse health consequences, including increased risk for premature death, cancer, metabolic syndrome, cardiovascular dysfunction, immune dysregulation, reproductive problems, mood disorders, and learning deficits. Here we review the evidence for the pervasive effects of circadian disruption in humans and animal models, drawing from both environmental and genetic studies, and identify questions for future research.
Neuron | 2013
Jennifer A. Evans; Tanya L. Leise; Oscar Castanon-Cervantes; Alec J. Davidson
Interactions among suprachiasmatic nucleus (SCN) neurons are required for robust circadian rhythms entrained to local time. To investigate these signaling mechanisms, we developed a functional coupling assay that uniquely captures the dynamic process by which SCN neurons interact. As a population, SCN neurons typically display synchronized rhythms with similar peak times, but will peak 6-12 hr apart after in vivo exposure to long days. Once they are removed from these conditions, SCN neurons resynchronize through a phase-dependent coupling process mediated by both vasoactive intestinal polypeptide (VIP) and GABAA signaling. Notably, GABAA signaling contributes to coupling when the SCN network is in an antiphase configuration, but opposes synchrony under steady-state conditions. Further, VIP acts together with GABAA signaling to couple the network in an antiphase configuration, but promotes synchrony under steady-state conditions by counteracting the actions of GABAA signaling. Thus, SCN neurons interact through nonredundant coupling mechanisms influenced by the state of the network.
PLOS ONE | 2011
Jennifer A. Evans; Tanya L. Leise; Oscar Castanon-Cervantes; Alec J. Davidson
The mammalian pacemaker in the suprachiasmatic nucleus (SCN) contains a population of neural oscillators capable of sustaining cell-autonomous rhythms in gene expression and electrical firing. A critical question for understanding pacemaker function is how SCN oscillators are organized into a coherent tissue capable of coordinating circadian rhythms in behavior and physiology. Here we undertake a comprehensive analysis of oscillatory function across the SCN of the adult PER2::LUC mouse by developing a novel approach involving multi-position bioluminescence imaging and unbiased computational analyses. We demonstrate that there is phase heterogeneity across all three dimensions of the SCN that is intrinsically regulated and extrinsically modulated by light in a region-specific manner. By investigating the mechanistic bases of SCN phase heterogeneity, we show for the first time that phase differences are not systematically related to regional differences in period, waveform, amplitude, or brightness. Furthermore, phase differences are not related to regional differences in the expression of arginine vasopressin and vasoactive intestinal polypeptide, two key neuropeptides characterizing functionally distinct subdivisions of the SCN. The consistency of SCN spatiotemporal organization across individuals and across planes of section suggests that the precise phasing of oscillators is a robust feature of the pacemaker important for its function.
The Journal of Neuroscience | 2012
Michael T. Sellix; Jennifer A. Evans; Tanya L. Leise; Oscar Castanon-Cervantes; DiJon D. Hill; Patrick Delisser; Gene D. Block; Michael Menaker; Alec J. Davidson
Aging produces a decline in the amplitude and precision of 24 h behavioral, endocrine, and metabolic rhythms, which are regulated in mammals by a central circadian pacemaker within the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. Disruption of the circadian system, as experienced during transmeridian travel, can lead to adverse health consequences, particularly in the elderly. To test the hypothesis that age-related changes in the response to simulated jet lag will reflect altered circadian function, we examined re-entrainment of central and peripheral oscillators from young and old PER2::luciferase mice. As in previous studies, locomotor activity rhythms in older mice required more days to re-entrain following a shift than younger mice. At the tissue level, effects of age on baseline entrainment were evident, with older mice displaying earlier phases for the majority of peripheral oscillators studied and later phases for cells within most SCN subregions. Following a 6 h advance of the light:dark cycle, old mice displayed slower rates of re-entrainment for peripheral tissues but a larger, more rapid SCN response compared to younger mice. Thus, aging alters the circadian timing system in a manner that differentially affects the re-entrainment responses of central and peripheral circadian clocks. This pattern of results suggests that a major consequence of aging is a decrease in pacemaker amplitude, which would slow re-entrainment of peripheral oscillators and reduce SCN resistance to external perturbation.
Neuroscience | 1989
David M. Armstrong; W.C. Benzing; Jennifer A. Evans; R.D. Terry; D. Shields; L.A. Hansen
In recent years the present authors and others have sought to determine the neurochemical composition of the dilated neuronal processes found within neuritic plaques of patients with Alzheimers disease. To date a number of neurotransmitter and neuropeptide systems have been observed within different plaques, yet at present it is unclear whether individual human plaques contain more than one transmitter substance. In the present study a highly sensitive dual-immunolabeling procedure was employed and it was demonstrated that substance P and somatostatin-immunoreactive profiles coexist within single senile plaques of patients with Alzheimers disease. Coexistence of somatostatin and substance P immunoreactivity within plaques was observed in the hippocampus and amygdala but not in the neocortex, although the latter region contained plaques within which somatostatin and substance P existed alone. The frequency with which we observed one or more neuropeptide within plaques was relatively low and in fact most plaques contained neither substance P nor somatostatin immunoreactivity. In addition, a large number of swollen peptidergic processes were observed outside of plaques. The significance of these observations with respect to the pathogenesis of Alzheimers disease is discussed.
PLOS ONE | 2011
Daniel Ansong; Kwaku Poku Asante; Johan Vekemans; Sandra K. Owusu; Ruth Owusu; Naana Ayiwa Wireko Brobby; David Dosoo; Alex Osei-Akoto; Kingsley Osei-Kwakye; Emmanuel Asafo-Adjei; Kwadwo Owusu Boahen; Justice Sylverken; George Adjei; David Sambian; Stephen Apanga; Kingsley Kayan; Michel Janssens; Marc Lievens; Olivier A; Erik Jongert; Patrice M. Dubois; Barbara Savarese; Joe Cohen; Sampson Antwi; Brian Greenwood; Jennifer A. Evans; Tsiri Agbenyega; Philippe Moris; Seth Owusu-Agyei
Background The Plasmodium falciparum pre-erythrocytic stage candidate vaccine RTS,S is being developed for protection of young children against malaria in sub-Saharan Africa. RTS,S formulated with the liposome based adjuvant AS01E or the oil-in-water based adjuvant AS02D induces P. falciparum circumsporozoite (CSP) antigen-specific antibody and T cell responses which have been associated with protection in the experimental malaria challenge model in adults. Methods This study was designed to evaluate the safety and immunogenicity induced over a 19 month period by three vaccination schedules (0,1-, 0,1,2- and 0,1,7-month) of RTS,S/AS01E and RTS,S/AS02D in children aged 5–17 months in two research centers in Ghana. Control Rabies vaccine using the 0,1,2-month schedule was used in one of two study sites. Results Whole blood antigen stimulation followed by intra-cellular cytokine staining showed RTS,S/AS01E induced CSP specific CD4 T cells producing IL-2, TNF-α, and IFN-γ. Higher T cell responses were induced by a 0,1,7-month immunization schedule as compared with a 0,1- or 0,1,2-month schedule. RTS,S/AS01E induced higher CD4 T cell responses as compared to RTS,S/AS02D when given on a 0,1,7-month schedule. Conclusions These findings support further Phase III evaluation of RTS,S/AS01E. The role of immune effectors and immunization schedules on vaccine protection are currently under evaluation. Trial Registration ClinicalTrials.gov NCT00360230
Journal of Biological Rhythms | 2007
Jennifer A. Evans; Jeffrey A. Elliott; Michael R. Gorman
In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 × 10-9 W/cm2, peak λ = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (α) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long α that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on α, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.
Chronobiology International | 2006
Michael R. Gorman; Jennifer A. Evans; Jeffrey A. Elliott
Conventional wisdom holds that the circadian pacemaker of rodents and humans is minimally responsive to light of the intensity provided by dim moonlight and starlight. However, dim illumination (<0.005 lux) provided during the daily dark periods markedly alters entrainment in hamsters. Under dimly lit scotophases, compared to completely dark ones phases, the upper range of entrainment is increased by ∼4 h, and re‐entrainment is accelerated following transfer from long to short day lengths. Moreover, the incidence of bimodal entrainment to 24 h light:dark:light:dark cycles is increased fourfold. Notably, the nocturnal illumination inducing these pronounced effects is equivalent in photic energy to that of a 2 sec, 100 lux light pulse. These effects may be parsimoniously interpreted as an action of dim light on the phase relations between multiple oscillators comprising the circadian pacemaker. An action of dim light distinct from that underlying bright‐light phase‐resetting may promote more effective entrainment. Together, the present results refute the view that scotopic illumination is environmental “noise” and indicate that clock function is conspicuously altered by nighttime illumination like that experienced under dim moonlight and starlight. We interpret our results as evidence for a novel action of dim light on the coupling of multiple circadian oscillators.
Current Biology | 2009
Jennifer A. Evans; Jeffrey A. Elliott; Michael R. Gorman
Jetlag reflects a mismatch between local and circadian time following rapid timezone travel [1]. Appropriately timed bright light can shift human circadian rhythms but recovery is slow (e.g., 1-2 days per timezone). Most symptoms subside after resynchronization, but chronic jetlag may have enduring negative effects [2], including even accelerated mortality in mice [3]. Melatonin, prescription drugs, and/or exercise may help shift the clock but, like bright light, require complex schedules of application [1]. Thus, there is a need for more efficient and practical treatments for addressing jetlag. In contrast to bright daytime lighting, nighttime conditions have received scant attention. By incorporating more naturalistic nighttime lighting comparable in intensity to dim moonlight, we demonstrate that recovery after simulated jetlag is accelerated when nights are dimly lit rather than completely dark.
Journal of Immunology | 2013
José M. Duhart; María Juliana Leone; Natalia Paladino; Jennifer A. Evans; Oscar Castanon-Cervantes; Alec J. Davidson; Diego A. Golombek
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2luc knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.